ﻻ يوجد ملخص باللغة العربية
Relations between radio surface brightness ($Sigma$) and diameter ($D$) of supernova remnants (SNRs) are important in astronomy. In this paper, following the work Duric & Seaquist (1986) at adiabatic phase, we carefully investigate shell-type supernova remnants at radiative phase, and obtain theoretical $Sigma$-$D$ relation at radiative phase of shell-type supernova remnants at 1 GHz. By using these theoretical $Sigma$-$D$ relations at adiabatic phase and radiative phase, we also roughly determine phases of some supernova remnant from observation data.
We derive the $Sigma$-$D$ relation of Galactic supernova remnants of shell-type separately at adiabatic-phase and at radiative-phase through two sets of different formulas, considering the different physical processes of shell-type remnants at both s
The origin of cosmic rays holds still many mysteries hundred years after they were first discovered. Supernova remnants have for long been the most likely sources of Galactic cosmic rays. I discuss here some recent evidence that suggests that superno
Determination of the magnetic field strength in the interstellar medium is one of the most complex tasks of contemporary astrophysics. We can only estimate the order of magnitude of the magnetic field strength by using a few very limited methods. Bes
Supernova remnants (SNRs) retain crucial information about both their parent explosion and circumstellar material left behind by their progenitor. However, the complexity of the interaction between supernova ejecta and ambient medium often blurs this
Multi-wavelength observations of mature supernova remnants (SNRs), especially with recent advances in gamma-ray astronomy, make it possible to constrain energy distribution of energetic particles within these remnants. In consideration of the SNR ori