ترغب بنشر مسار تعليمي؟ اضغط هنا

The evolution of rotating very massive stars with LMC composition

162   0   0.0 ( 0 )
 نشر من قبل Karen K\\\"ohler
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a dense model grid with tailored input chemical composition appropriate for the Large Magellanic Cloud. We use a one-dimensional hydrodynamic stellar evolution code, which accounts for rotation, transport of angular momentum by magnetic fields, and stellar wind mass loss to compute our detailed models. We calculate stellar evolution models with initial masses of 70-500 Msun and with initial surface rotational velocities of 0-550 km/s, covering the core-hydrogen burning phase of evolution. We find our rapid rotators to be strongly influenced by rotationally induced mixing of helium, with quasi-chemically homogeneous evolution occurring for the fastest rotating models. Above 160 Msun, homogeneous evolution is also established through mass loss, producing pure helium stars at core hydrogen exhaustion independent of the initial rotation rate. Surface nitrogen enrichment is also found for slower rotators, even for stars that lose only a small fraction of their initial mass. For models above 150 MZAMS, and for models in the whole considered mass range later on, we find a considerable envelope inflation due to the proximity of these models to their Eddington limit. This leads to a maximum zero-age main sequence surface temperature of 56000 K, at 180 Msun, and to an evolution of stars in the mass range 50-100 Msun to the regime of luminous blue variables in the HR diagram with high internal Eddington factors. Inflation also leads to decreasing surface temperatures during the chemically homogeneous evolution of stars above 180 Msun. The cool surface temperatures due to the envelope inflation in our models lead to an enhanced mass loss, which prevents stars at LMC metallicity from evolving into pair-instability supernovae. The corresponding spin-down will also prevent very massive LMC stars to produce long-duration gamma-ray bursts, which might, however, originate from lower masses.



قيم البحث

اقرأ أيضاً

The first massive stars triggered the onset of chemical evolution by releasing the first metals (elements heavier than helium) in the Universe. The nature of these stars and how the early chemical enrichment took place is still largely unknown. Rotat ional-induced mixing in the stellar interior can impact the nucleosynthesis during the stellar life of massive stars and lead to stellar ejecta having various chemical compositions. We present low and zero-metallicity 20, 25 and 40 $M_{odot}$ stellar models with various initial rotation rates and assumptions for the nuclear reactions rates. With increasing initial rotation, the yields of light (from $sim$ C to Al) and trans-iron elements are boosted. The trans-iron elements (especially elements heavier than Ba) are significantly affected by the nuclear reaction uncertainties. The chemical composition of the observed CEMP (carbon-enhanced metal-poor) stars CS29528-028 and HE0336+0113 are consistent with the chemical composition of the material ejected by a fast rotating 40~$M_{odot}$ model.
Stellar parameters of 25 planet-hosting stars and abundances of Li, C, O, Na, Mg, Al, S, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Zn, Y, Zr, Ba, Ce, Pr, Nd, Sm and Eu, were studied based on homogeneous high resolution spectra and uniform techniques. The ir on abundance [Fe/H] and key elements (Li, C, O, Mg, Si) indicative of the planet formation, as well as the dependencies of [El/Fe] on $T_{cond}$, were analyzed. The iron abundances determined in our sample stars with detected massive planets range within -0.3<[Fe/H]<0.4. The behaviour of [C/Fe], [O/Fe], [Mg/Fe] and [Si/Fe] relative to [Fe/H] is consistent with the Galactic Chemical Evolution trends. The mean values of C/O and [C/O] are <C/O>= 0.48 +/-0.07 and <[C/O]>=-0.07 +/-0.07, which are slightly lower than solar ones. The Mg/Si ratios range from 0.83 to 0.95 for four stars in our sample and from 1.0 to 1.86 for the remaining 21 stars. Various slopes of [El/Fe] vs. Tcond were found. The dependencies of the planetary mass on metallicity, the lithium abundance, the C/O and Mg/Si ratios, and also on the [El/Fe]-Tcond slopes were considered.
Rotational mixing in massive stars is a widely applied concept, with far reaching consequences for stellar evolution. Nitrogen surface abundances for a large and homogeneous sample of massive B-type stars in the LMC were obtained by the VLT-FLAMES Su rvey of Massive Stars. This sample is the first covering a broad range of projected stellar rotational velocities, with a large enough sample of high quality data to allow for a statistically significant analysis. We use the sample to provide the first rigorous test of the theory of rotational mixing in massive stars. We calculated a grid of stellar evolution models, using the FLAMES sample to calibrate some of the uncertain mixing processes. We developed a new population-synthesis code, which uses this grid to simulate a large population of stars with masses, ages and rotational velocity distributions consistent with those from the FLAMES sample. The synthesized population is then filtered by the selection effects in the observed sample, to enable a direct comparison between the empirical results and theoretical predictions. Our simulations reproduce the fraction of stars without significant nitrogen enrichment. The predicted number of rapid rotators with enhanced nitrogen is about twice as large as found observationally. Furthermore, a group of stars consisting of slowly rotating, nitrogen-enriched objects and another consisting of rapidly rotating un-enriched objects can not be reproduced by our single-star population synthesis. Additional physical processes appear to be required to understand the population of massive main-sequence stars from the FLAMES sample.We discuss the possible role of binary stars and magnetic fields in the interpretation of our results. We find that the population of slowly rotating nitrogen-enriched stars is unlikely produced via mass transfer and subsequent tidal spin-down in close binary systems
132 - Paul A. Crowther 2012
We use contemporary evolutionary models for Very Massive Stars (VMS) to assess whether the Eddington limit constrains the upper stellar mass limit. We also consider the interplay between mass and age for the wind properties and spectral morphology of VMS, with reference to the recently modified classification scheme for O2-3.5If*/WN stars. Finally, the death of VMS in the local universe is considered in the context of pair instability supernovae.
193 - Jorick S. Vink 2014
Recent studies suggest the existence of very massive stars (VMS) up to 300 solar masses in the local Universe. As this finding may represent a paradigm shift for the canonical stellar upper-mass limit of 150 solar masses, it is timely to evaluate the physics specific to VMS, which is currently missing. For this reason, we decided to construct a book entailing both a discussion of the accuracy of VMS masses (Martins), as well as the physics of VMS formation (Krumholz), mass loss (Vink), instabilities (Owocki), evolution (Hirschi), and fate (theory -- Woosley & Heger; observations -- Smith).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا