ﻻ يوجد ملخص باللغة العربية
The layered transition metal dichalcogenides (TMDs) have attracted considerable interest due to their unique electronic and optical properties. Here we report electric field induced strong electroluminescence in multi-layer MoS2 and WSe2. We show that GaN-Al2O3-MoS2 and GaN-Al2O3-MoS2-Al2O3-graphene vertical heterojunctions can be created with excellent rectification behaviour. Electroluminescence studies demonstrate prominent direct bandgap excitonic emission in multi-layer MoS2 over the entire vertical junction area. Importantly, the electroluminescence efficiency observed in multi-layer MoS2 is comparable to or even higher than that in monolayers, corresponding to a relative electroluminescence enhancement factor of >1000 in multi-layer MoS2 when compared to its photoluminescence. This striking enhancement of electroluminescence can be attributed to the high electric field induced carrier redistribution from low energy points (indirect bandgap) to high energy points (direct bandgap) of k-space, arising from the unique band structure of MoS2 with a much higher density of states at high energy points. The electric field induced electroluminescence is general for other TMDs including WSe2, and can provide a fundamental platform to probe the carrier injection, population and recombination in multi-layer TMDs and open up a new pathway toward TMD based optoelectronic devices.
We detect electroluminescence in single layer molybdenum disulphide (MoS2) field-effect transistors built on transparent glass substrates. By comparing absorption, photoluminescence, and electroluminescence of the same MoS2 layer, we find that they a
Recently emerged layered transition metal dichalcogenides have attracted great interest due to their intriguing fundamental physical properties and potential applications in optoelectronics. Using scattering-type scanning near-field optical microscop
We study field effect transistor characteristics in etched single layer MoS2 nanoribbon devices of width 50nm with ohmic contacts. We employ a SF6 dry plasma process to etch MoS2 nanoribbons using low etching (RF) power allowing very good control ove
Gate-induced superconductivity at the surface of nanolayers of semiconducting transition metal dichalcogenides (TMDs) has attracted a lot of attention in recent years, thanks to the sizeable transition temperature, robustness against in-plane magneti
State-of-the-art fabrication and characterization techniques have been employed to measure the thermal conductivity of suspended, single-crystalline MoS2 and MoS2/hBN heterostructures. Two-laser Raman scattering thermometry was used combined with rea