ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-epoch, multi-frequency VLBI study of the parsec-scale jet in the blazar 3C 66A

521   0   0.0 ( 0 )
 نشر من قبل Guang-Yao Zhao Ph.D.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the observational results of the Gamma-ray blazar, 3C 66A, at 2.3, 8.4, and 22 GHz at 4 epochs during 2004-05 with the VLBA. The resulting images show an overall core-jet structure extending roughly to the south with two intermediate breaks occurring in the region near the core. By model-fitting to the visibility data, the northmost component, which is also the brightest, is identified as the core according to its relatively flat spectrum and its compactness. As combined with some previous results to investigate the proper motions of the jet components, it is found the kinematics of 3C 66A is quite complicated with components of inward and outward, subluminal and superluminal motions all detected in the radio structure. The superluminal motions indicate strong Doppler boosting exists in the jet. The apparent inward motions of the innermost components last for at least 10 years and could not be caused by new-born components. The possible reason could be non-stationarity of the core due to opacity change.



قيم البحث

اقرأ أيضاً

In recent studies, several AGN have exhibited gradients of the Faraday Rotation Measure (RM) transverse to their parsec-scale jet direction. Faraday rotation likely occurs as a result of a magnetized sheath wrapped around the jet. In the case of 3C 2 73, using Very Long Baseline Array multi-epoch observations at 5, 8 and 15 GHz in 2009--2010, we observe that the jet RM has changed significantly towards negative values compared with that previously observed. These changes could be explained by a swing of the parsec-scale jet direction which causes synchrotron emission to pass through different portions of the Faraday screen. We develop a model for the jet-sheath system in 3C 273 where the sheath is wider than the single-epoch narrow relativistic jet. We present our oversized sheath model together with a derived wide jet full intrinsic opening angle $alpha_mathrm{int}=2.1^circ$ and magnetic field strength $B_{||}=3$ $mu$G and thermal particle density $N_mathrm{e}=125~mathrm{cm}^{-3}$ at the wide jet--sheath boundary 230 pc downstream (deprojected) from its beginning. Most of the Faraday rotation occurs within the innermost layers of the sheath. The model brings together the jet direction swing and long-term RM evolution and may be applicable to other AGN jets that exhibit changes of their apparent jet direction.
Blazars are among the most powerful extragalactic objects, as a sub-class of active galactic nuclei. They launch relativistic jets and their emitted radiation shows strong variability across the entire electro-magnetic spectrum. The mechanisms produc ing the variability are still controversial and different models have been proposed to explain the observed variations in multi-frequency blazar light curves.We investigate the capabilities of the classical shock-in-jet model to explain and reconstruct the observed evolution of flares in the turnover frequency turnover flux density plane and their frequency-dependent light curve parameters. With a detailed parameter space study we provide the framework for future, detailed comparisons of observed flare signatures with the shock-in-jet scenario. Based on the shock model we compute synthetic single-dish light curves at different radio frequencies (2.6 to 345 GHz) and for different physical conditions in a conical jet (e.g. magnetic field geometry and Doppler factor). From those we extract the slopes of the different energy loss stages within the $ u_mathrm{m}$-$S_mathrm{m}$ plane and deduce the frequency-dependence of different light curve parameters such as flare amplitude, time scale and cross-band delays. The evolution of the Doppler factor along the jet has the largest influence on the evolution of the flare and on the frequency-dependent light curve parameters. The synchrotron stage can be hidden in the Compton or in the adiabatic stage, depending mainly on the evolution of the Doppler factor, which makes it difficult to detect its signature in observations. In addition, we show that the time lags between different frequencies can be used as an efficient tool to better constrain the physical properties of these objects.
72 - Rocco Lico , J.Liu , M.Giroletti 2020
PG 1553+113 is the first blazar showing an approximately two-year quasi-periodic pattern in its gamma-ray light curve. Such quasi-periodicity might have a geometrical origin, possibly related to the precessing nature of the jet, or could be intrinsic to the source and related to pulsational accretion flow instabilities. By means of a ~2yr very long baseline array (VLBA) monitoring at 15, 24, and 43 GHz we investigate the source pc-scale properties during an entire cycle of gamma-ray activity in the period 2015-2017. In contrast to the well-defined periodicity in the gamma-ray emission, at radio frequencies no clear periodic pattern can be recognized. The jet position angle, constrained by means of the total intensity ridge line, varies across the different observing epochs in the range 40-60 deg. We also investigate the time evolution of the source polarization properties, including the rotation measure. The brightness temperature is found to decrease as the frequency increases with an intrinsic value of ~1.5 x 10^10 K and the estimated Doppler factor is ~1.4.
We present a multi-wavelength temporal analysis of the blazar 3C 454.3 during the high $gamma$-ray active period from May-December, 2014. Except for X-rays, the period is well sampled at near-infrared (NIR)-optical by the emph{SMARTS} facility and th e source is detected continuously on daily timescale in the emph{Fermi}-LAT $gamma$-ray band. The source exhibits diverse levels of variability with many flaring/active states in the continuously sampled $gamma$-ray light curve which are also reflected in the NIR-optical light curves and the sparsely sampled X-ray light curve by the emph{Swift}-XRT. Multi-band correlation analysis of this continuous segment during different activity periods shows a change of state from no lags between IR and $gamma$-ray, optical and $gamma$-ray, and IR and optical to a state where $gamma$-ray lags the IR/optical by $sim$3 days. The results are consistent with the previous studies of the same during various $gamma$-ray flaring and active episodes of the source. This consistency, in turn, suggests an extended localized emission region with almost similar conditions during various $gamma$-ray activity states. On the other hand, the delay of $gamma$-ray with respect to IR/optical and a trend similar to IR/optical in X-rays along with strong broadband correlations favor magnetic field related origin with X-ray and $gamma$-ray being inverse Comptonized of IR/optical photons and external radiation field, respectively.
270 - T. Savolainen 2008
Multi-frequency VLBI observations allow studies of the continuum spectrum in the different parts of the parsec scale jets of AGN, providing information on the physical properties of the plasma and magnetic fields in them. Since VLBI networks cannot b e scaled, the range of spatial frequencies observed differs significantly between the different observing frequencies, which makes it difficult to obtain a broadband spectrum of the individual emission features in the jet. In this paper we discuss a model-fitting based spectral extraction method, which can significantly relieve this problem. The method uses a priori knowledge of the source structure, measured at high frequencies, to allow at lower frequencies the derivation of the sizes and flux densities of even those emission features that have mutual separations significantly less than the Rayleigh limit at the given frequency. We have successfully used this method in the analysis of 5-86 GHz VLBA data of 3C273. The spectra and sizes of several individual jet features were measured, thus allowing derivation of the magnetic flux density and the energy density of the relativistic electrons in the different parts of the jet. We discuss the results, which include e.g. a detection of a strong gradient in the magnetic field across the jet of 3C273.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا