ﻻ يوجد ملخص باللغة العربية
We present Gemini spectroscopy for 21 candidate optical counterparts to X-ray sources discovered in the Galactic Bulge Survey (GBS). For the majority of the 21 sources, the optical spectroscopy establishes that they are indeed the likely counterparts. One of the criteria we used for the identification was the presence of an Ha emission line. The spectra of several sources revealed an Ha emission line only after careful subtraction of the F or G stellar spectral absorption lines. In a sub-class of three of these sources the residual Halpha emission line is broad (> 400 km/s) which suggests that it is formed in an accretion disk, whereas in other cases the line width is such that we currently cannot determine whether the line emission is formed in an active star/binary or in an accretion disk. GBS source CX377 shows this hidden accretion behaviour most dramatically. The previously-identified broad Ha emission of this source is not present in its Gemini spectra taken about 1 year later. However, broad emission is revealed after subtracting an F6 template star spectrum. The Gemini spectra of three sources (CX446, CX1004, and CXB2) as well as the presence of possible eclipses in light curves of these sources suggest that these sources are accreting binaries viewed under a high inclination.
(Abridged:) We present the identification of optical counterparts to 23 Galactic Bulge Survey X-ray sources. We report their accurate coordinates and optical spectra acquired at the VLT and Magellan. All sources are classified as accreting binaries a
The Galactic bulge is the central spheroid of our Galaxy, containing about one quarter of the total stellar mass of the Milky Way (M_bulge=1.8x10^10 M_sun; Sofue, Honma & Omodaka 2009). Being older than the disk, it is the first massive component of
Major galaxy mergers are thought to play an important part in fuelling the growth of supermassive black holes. However, observational support for this hypothesis is mixed, with some studies showing a correlation between merging galaxies and luminous
The fastest-spinning neutron stars in low-mass X-ray binaries, despite having undergone millions of years of accretion, have been observed to spin well below the Keplerian break-up frequency. We simulate the spin evolution of synthetic populations of
We explore the long-term evolution of mass-transferring white dwarf binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational wave astronomy. We cover a broad range of initial component masses