ترغب بنشر مسار تعليمي؟ اضغط هنا

NGC 2276: a remarkable galaxy with a large number of ULXs

193   0   0.0 ( 0 )
 نشر من قبل Anna Wolter
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Anna Wolter




اسأل ChatGPT حول البحث

The starbusting, nearby (D = 32.9 Mpc) spiral (Sc) galaxy NGC2276 belongs to the sparse group dominated by the elliptical galaxy NGC2300. NGC2276 is a remarkable galaxy, as it displays a disturbed morphology at many wavelengths. This is possibly due to gravitational interaction with the central elliptical galaxy of the group. Previous ROSAT and XMM-Newton observations resulted in the detection of extended hot gas emission and of a single very bright (~1.e41 erg/s) ultraluminous X-ray source (ULX) candidate. Here we report on a study of the X-ray sources of NGC2276 based on CHANDRA data taken in 2004. CHANDRA was able to resolve 16 sources, 8 of which are ULXs, and to reveal that the previous ULX candidate is actually composed of a few distinct objects. We construct the luminosity function of NGC2276, which can be interpreted as dominated by high mass X-ray binaries, and estimate the star formation rate (SFR) to be ~5-15 Msun/yr, consistent with the values derived from optical and infrared observations. By means of numerical simulations, we show that both ram pressure and viscous transfer effects are necessary to produce the distorted morphology and the high SFR observed in NGC2276, while tidal interaction have a marginal effect.



قيم البحث

اقرأ أيضاً

122 - Anna Wolter 2010
We present results for X-ray point sources in the Sc galaxy NGC 2276, obtained by analyzing Chandra data. The galaxy is known to be very active in many wavelengths, possibly due to gravitational interaction with the central elliptical of the group, N GC 2300. However, previous XMM-Newton observations resulted in the detection of only one bright ULX and extended hot gas emission. We present here the X-ray population in NGC 2276 which comprises 17 sources. We found that 6 of them are new ULX sources in this spiral galaxy resolved for the first time by Chandra. We constructed the Luminosity Function that can be interpreted as mainly due of High Mass X-ray binaries, and estimate the Star Formation rate (SFR) to be SFR ~ 5-10 M_sun/yr.
We investigate the spatial coincidence of ultra-luminous X-ray sources (ULXs) with young massive stellar clusters. In particular we perform astrometry on Chandra and HST data of two ULXs that are possibly associated with such clusters. To date M82 X- 1 is the only ULX claimed to be coincident with a young massive stellar cluster. We remeasure the position of this source with a high accuracy and find that the position of the X-ray source is 0.65 arcsec away from the stellar cluster, corresponding to an offset significance of 3 sigma. We also report the discovery of a new candidate, based on observations of NGC 7479. One of the ULXs observed in three X-ray observations is found to be spatially coincident (within 1 sigma of the position error) with a young super-cluster observed in the HST images. In the brightest state, the absorbed luminosity of the ULX is a few times $10^{40}$ erg s$^{-1}$, and in the faintest state below the detection limit of $sim4$ times $10^{39}$ erg s$^{-1}$. The luminosity in the brightest state requires an accreting black hole mass of at least 100 M$_{odot}$ assuming isotropic emission. However it is possible that the source is contaminated by X-ray emission from the nearby supernova SN2009jf. In this case the luminosity of the ULX is in a range where it is strongly debated whether it is a super-Eddington stellar mass black hole or an intermediate mass black hole. The colours of the host cluster indicate a young stellar population, with an age between 10 and 100 Myr. The total stellar mass of the cluster is $sim5cdot10^{5}$M$_{odot}$.
Two recent observations of the nearby galaxy NGC 6946 with NuSTAR, one simultaneous with an XMM-Newton observation, provide an opportunity to examine its population of bright accreting sources from a broadband perspective. We study the three known ul traluminous X-ray sources (ULXs) in the galaxy, and find that ULX-1 and ULX-2 have very steep power-law spectra with $Gamma=3.6^{+0.4}_{-0.3}$ in both cases. Their properties are consistent with being super-Eddington accreting sources with the majority of their hard emission obscured and down-scattered. ULX-3 (NGC 6946 X-1) is significantly detected by both XMM-Newton and NuSTAR at $L_{rm X}=(6.5pm0.1)times10^{39}$ erg s$^{-1}$, and has a power-law spectrum with $Gamma=2.51pm0.05$. We are unable to identify a high-energy break in its spectrum like that found in other ULXs, but the soft spectrum likely hinders our ability to detect one. We also characterise the new source, ULX-4, which is only detected in the joint XMM-Newton and NuSTAR observation, at $L_{rm X}=(2.27pm0.07)times10^{39}$ erg s$^{-1}$, and is absent in a Chandra observation ten days later. It has a very hard cut-off power-law spectrum with $Gamma=0.7pm0.1$ and $E_{rm cut}=11^{+9}_{-4}$ keV. We do not detect pulsations from ULX-4, but its transient nature can be explained either as a neutron star ULX briefly leaving the propeller regime or as a micro-tidal disruption event induced by a stellar-mass compact object.
60 - Chen Wang 2019
We discovered and studied an ultraluminous X-ray source (CXOU J203451.1+601043) that appeared in the spiral galaxy NGC 6946 at some point between 2008 February and 2012 May, and has remained at luminosities $approx$2-4 $times 10^{39}$ erg s$^{-1}$ in all observations since then. Our spectral modelling shows that the source is generally soft, but with spectral variability from epoch to epoch. Using standard empirical categories of the ultraluminous regimes, we find that CXOU J203451.1+601043 was consistent with a broadened disk state in 2012, but was in a transitional state approaching the super-soft regime in 2016, with substantial down-scattering of the hard photons (similar, for example, to the ultraluminous X-ray source in NGC 55). It has since hardened again in 2018-2019 without any significant luminosity change. The most outstanding property of CXOU J203451.1+601043 is a strong emission line at an energy of of $(0.66 pm 0.01)$ keV, with equivalent width of $approx$100 eV, and de-absorbed line luminosity of $approx$2 $times 10^{38}$ erg s$^{-1}$, seen when the continuum spectrum was softest. We identify the line as OVIII Ly$alpha$ (rest frame energy of 0.654 keV); we interpret it as a strong indicator of a massive outflow. Our finding supports the connection between two independent observational signatures of the wind in super-Eddington sources: a lower temperature of the Comptonized component, and the presence of emission lines in the soft X-ray band. We speculate that the donor star is oxygen-rich: a CO or O-Ne-Mg white dwarf in an ultracompact binary. If that is the case, the transient behaviour of CXOU J203451.1+601043 raises intriguing theoretical questions.
We report the discovery of CXOU J191100-595621 and CXOU J191012-595619, two galaxy clusters serendipitously detected in the direction of globular cluster NGC 6752, based on archival {it Chandra} observations with a total exposure time of $sim 344$ ks . The deep {it Chandra} X-ray data enabled us to measure properties of both systems, which result in a redshift of $z=0.239pm0.013$ and $z=0.375pm0.016$, a temperature of $kT=3.32^{+0.57}_{-0.46}$ keV and $kT=3.71^{+1.18}_{-0.86}$ keV, an iron abundance of $Z_{rm Fe}=0.64^{+0.34}_{-0.29}Z_{rm Feodot}$ and $Z_{rm Fe}=1.29^{+0.97}_{-0.65}Z_{rm Feodot}$, and a rest-frame full band (0.5-7 keV) luminosity of $L_{rm X}=9.2^{+1.2}_{-1.1}times 10^{43} {rm , erg, s^{-1}}$ and $L_{rm X}=9.9^{+2.7}_{-2.2}times 10^{43} {rm , erg, s^{-1}}$ for CXOU J191100-595621 and CXOU J191012-595619, respectively. The temperature profile of CXOU J191100-595621 is found to decreases with decreasing radius, indicating a cool core in this cluster. The hydrostatic equilibrium estimation suggests the clusters are moderately weighted, with $M_{500}=(1.3pm0.4)times 10^{14}, M_{odot}$ and $M_{500}=(2.0pm1.5)times 10^{14}, M_{odot}$, respectively. We search for optical and radio counterparts of X-ray point sources in the clusters. Three active galactic nuclei are found, among which one is identified with a narrow-angle-tail radio galaxy, and one is found to associated with the brightest central galaxy (BCG) of CXOU J191100-595621.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا