Visible Light Assisted Gas Sensing with TiO2 Nanowires


الملخص بالإنكليزية

Sensing response of individual single-crystal titania nanowires configured as chemiresistors for detecting reducing (CO, H2) and oxidizing (O2) gases is shown to be sensitive to visible light illumination. It is assumed that doping of the TiO2 nanowires with C and/or N during carbon assisted vapor-solid growth creates extrinsic states in the band gap close to the valence band maximum, which enables photoactivity at the photon energies of visible light. The inherently large surface-to-volume ratio of nanowires, along with facile transport of the photo-generated carriers to/from the nanowires surface promote the adsorption/desorption of donor/acceptor molecules, and therefore open the possibility for visible light assisted gas sensing. The photo-catalytic performance of TiO2 nanowire chemiresistors demonstrates the prospect of combining light harvesting and sensing action in a single nanostructure.

تحميل البحث