ﻻ يوجد ملخص باللغة العربية
We show that the two recently proposed methods to compute Renyi entanglement entropies in the realm of determinant quantum Monte Carlo methods for fermions are in principle equivalent, but differ in sampling strategies. The analogy allows to formulate a numerically stable calculation of the entanglement spectrum at strong coupling. We demonstrate the approach by studying static and dynamical properties of the entanglement hamiltonian across the interaction driven quantum phase transition between a topological insulator and quantum antiferromagnet in the Kane-Mele Hubbard model. The formulation is not limited to fermion systems and can readily be adapted to world-line based simulations of bosonic systems.
We present a non-iterative solver based on the Schur complement method for sparse linear systems of special form which appear in Quantum Monte-Carlo (QMC) simulations of strongly interacting fermions on the lattice. While the number of floating-point
We tutorially review the determinantal Quantum Monte Carlo method for fermionic systems, using the Hubbard model as a case study. Starting with the basic ingredients of Monte Carlo simulations for classical systems, we introduce aspects such as impor
In the context of realistic calculations for strongly-correlated materials with $d$- or $f$-electrons the efficient computation of multi-orbital models is of paramount importance. Here we introduce a set of invariants for the SU(2)-symmetric Kanamori
We develop an energy density matrix that parallels the one-body reduced density matrix (1RDM) for many-body quantum systems. Just as the density matrix gives access to the number density and occupation numbers, the energy density matrix yields the en
Exciton-polaron formation in one-dimensional lattice models with short or long-range carrier-phonon interaction is studied by quantum Monte Carlo simulations. Depending on the relative sign of electron and hole-phonon coupling, the exciton-polaron si