ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Investigation of Isochrone Consistency Using the Old Open Cluster NGC 188

134   0   0.0 ( 0 )
 نشر من قبل Ted von Hippel
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Shane Hills




اسأل ChatGPT حول البحث

This paper provides a detailed comparison of the differences in parameters derived for a star cluster from its color-magnitude diagrams depending on the filters and models used. We examine the consistency and reliability of fitting three widely-used stellar evolution models to fifteen combinations of optical and near-IR photometry for the old open cluster NGC 188. The optical filter response curves match those of the theoretical systems and are thus not the source of fit inconsistencies. NGC 188 is ideally suited to the present study thanks to a wide variety of high-quality photometry and available proper motions and radial velocities which enable us to remove non-cluster members and many binaries. Our Bayesian fitting technique yields inferred values of age, metallicity, distance modulus, and absorption as a function of the photometric band combinations and stellar models. We show that the historically-favored three band combinations of UBV and VRI can be meaningfully inconsistent with each other and with longer baseline datasets such as UBVRIJHKs. Differences among model sets can also be substantial. For instance, fitting Yi et al. (2001) and Dotter et al. (2008) models to UBVRIJHKs photometry for NGC 188 yields the following cluster parameters: age={5.78+ 0.03, 6.45+-0.04} Gyr, [Fe/H]={+0.125+-0.003, -0.077+-0.003} dex, m-M={11.441+-0.007, 11.525+-0.005} mag, and Av={0.162+-0.003, 0.236+-0.003} mag, respectively. Within the formal fitting errors, these two fits are substantially and statistically different. Such differences amongst fits using different filters and models are a cautionary tale regarding our current ability to fit star cluster color-magnitude diagrams. Additional modeling of this kind, with more models and star clusters, and future GAIA parallaxes are critical for isolating and quantifying the most relevant uncertainties in stellar evolutionary models.



قيم البحث

اقرأ أيضاً

102 - Roger E. Cohen 2019
The binary fractions of open and globular clusters yield powerful constraints on their dynamical state and evolutionary history. We apply publicly available Bayesian analysis code to a $UBVRIJHK_{S}$ photometric catalog of the old open cluster NGC 18 8 to detect and characterize photometric binaries along the cluster main sequence. This technique has the advantage that it self-consistently handles photometric errors, missing data in various bandpasses, and star-by-star prior constraints on cluster membership. Simulations are used to verify uncertainties and quantify selection biases in our analysis, illustrating that among binaries with mass ratios >0.5, we recover the binary fraction to better than 7% in the mean, with no significant dependence on binary fraction and a mild dependence on assumed mass ratio distribution. Using our photometric catalog, we recover the majority (65%$pm$11%) of spectroscopically identified main sequence binaries, including 8 of the 9 with spectroscopically measured mass ratios. Accounting for incompleteness and systematics, we derive a mass ratio distribution that rises toward lower mass ratios (within our $q >$0.5 analysis domain). We observe a raw binary fraction for solar-type main sequence stars with mass ratios $q >$0.5 of 42%$pm$4%, independent of the assumed mass ratio distribution to within its uncertainties, consistent with literature values for old open clusters but significantly higher than the field solar-type binary fraction. We confirm that the binaries identified by our method are more concentrated than single stars, in agreement with previous studies, and we demonstrate that the binary nature of those candidates which remain unidentified spectroscopically is strongly supported by photometry from Gaia DR2.
We present the UV photometry of the old open cluster NGC188 obtained using images acquired with Ultraviolet Imaging Telescope (UVIT) on board the ASTROSAT satellite, in two far-UV (FUV) and one near-UV (NUV) filters. UVIT data is utilised in combinat ion with optical photometric data to construct the optical and UV colour-magnitude diagrams (CMDs). In the FUV images, we detect only hot and bright blue straggler stars (BSSs), one hot subdwarf, and one white dwarf (WD) candidate. In the NUV images, we detect members up to a faintness limit of ~22 mag including 21 BSSs, 2 yellow straggler stars (YSSs), and one WD candidate. This study presents the first NUV-optical CMDs, and are overlaid with updated BaSTI-IAC isochrones and WD cooling sequence, which are found to fit well to the observed CMDs. We use spectral energy distribution (SED) fitting to estimate the effective temperatures, radii, and luminosities of the UV-bright stars. We find the cluster to have an HB population with three stars (Teff = 4750 - 21000 K). We also detect two yellow straggler stars, with one of them with UV excess connected to its binarity and X-ray emission.
In this paper, we present our results for the photometric and kinematical studies of old open cluster NGC 188. We determined various astrophysical parameters like limited radius, core and tidal radii, distance, luminosity and mass functions, total ma ss, relaxation time etc. for the cluster using 2MASS catalog. We obtained the clusters distance from the Sun as 1721+/-41 pc and log (age)= 9.85+/-0.05 at Solar metallicity. The relaxation time of the cluster is smaller than the estimated cluster age which suggests that the cluster is dynamically relaxed. Our results agree with the values mentioned in the literature. We also determined the clusters apex coordinates as (281.88 deg, -44.76 deg) using AD-diagram method. Other kinematical parameters like space velocity components, cluster center and elements of Solar motion etc. have also been computed.
400 - Jiaxin Wang 2015
This paper presents CCD multicolour photometry for the old open cluster NGC 188. The observations were carried out as a part of the Beijing--Arizona--Taiwan--Connecticut Multicolour Sky Survey from 1995 February to 2008 March, using 15 intermediate-b and filters covering 3000--10000 AA. By fitting the Padova theoretical isochrones to our data, the fundamental parameters of this cluster are derived: an age of $t=7.5pm 0.5$ Gyr, a distant modulus of $(m-M)_0=11.17pm0.08$, and a reddening of $E(B-V)=0.036pm0.010$. The radial surface density profile of NGC 188 is obtained by star count. By fitting the King model, the structural parameters of NGC 188 are derived: a core radius of $R_{c}=3.80$, a tidal radius of $R_{t}=44.78$, and a concentration parameter of $C_{0}=log(R_{t}/R_{c})=1.07$. Fitting the mass function to a power-law function $phi(m) propto m^{alpha}$, the slopes of mass functions for different spatial regions are derived. We find that NGC 188 presents a slope break in the mass function. The break mass is $m_{rm break}=0.885~M_{odot}$. In the mass range above $m_{rm break}$, the slope of the overall region is $alpha=-0.76$. The slope of the core region is $alpha=1.09$, and the slopes of the external regions are $alpha=-0.86$ and $alpha=-2.15$, respectively. In the mass range below $m_{rm break}$, these slopes are $alpha=0.12$, $alpha=4.91$, $alpha=1.33$, and $alpha=-1.09$, respectively. The mass segregation in NGC 188 is reflected in the obvious variation of the slopes in different spatial regions of this cluster.
NGC 6819 is a richly populated, older open cluster situated within the Kepler field. A CCD survey of the cluster on the uvbyCaHbeta system, coupled with proper-motion membership, has been used to isolate 382 highly probable, single-star unevolved mai n-sequence members over a 20-arcminute field centered on the cluster. From 278 F dwarfs with high precision photometry in all indices, a mean reddening of E(b-y) = 0.117 +/- 0.005 or E(B-V) = 0.160 +/- 0.007 is derived, where the standard errors of the mean include both internal errors and the photometric zero-point uncertainty. With the reddening fixed, the metallicity derived from the same 278 stars is [Fe/H] = -0.116 +/- 0.101 from m_1 and -0.055 +/- 0.033 from hk, for a weighted average of [Fe/H] = -0.06 +/- 0.04, where the quoted standard errors of the mean values include the internal errors from the photometric scatter plus the uncertainty in the photometric zero points. If metallicity is derived using individual reddening values for each star to account for potential reddening variation across the face of the cluster, the analogous result is unchanged. The cluster members at the turnoff of the color-magnitude diagram are used to test and confirm the recently discovered variation in reddening across the face of the cluster, with a probable range in the variation of Delta[E(B-V)] = 0.045 +/-0.015. With the slightly higher reddening and lower [Fe/H] compared to commonly adopted values, isochrone fitting leads to an age of 2.3 +/- 0.2 Gyr for an apparent modulus of (m-M) = 12.40 +/-0.12.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا