We use a theoretical frame-work to analytically assess temporal prediction error functions on von-Karman turbulence when a zonal representation of wave-fronts is assumed. Linear prediction models analysed include auto-regressive of order up to three, bilinear interpolation functions and a minimum mean square error predictor. This is an extension of the authors previously published work (see ref. 2) in which the efficacy of various temporal prediction models was established. Here we examine the tolerance of these algorithms to specific forms of model errors, thus defining the expected change in behaviour of the previous results under less ideal conditions. Results show that +/- 100pc wind-speed error and +/- 50 deg are tolerable before the best linear predictor delivers poorer performance than the no-prediction case.