ترغب بنشر مسار تعليمي؟ اضغط هنا

Was Lepenski Vir an ancient Sun or Pleiades observatory?

365   0   0.0 ( 0 )
 نشر من قبل Vladan Pankovic
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we consider some old hypotheses according to which remarkable mesolithic village Lepenski Vir (9500 -- 5500 BC) at the right (nearly west) Danube riverside in the Iron gate in Serbia was an ancient (one of the oldest) Sun observatory. We use method recently suggested by A. C. Sparavigna, concretely we use freely available software or local Sun radiation direction simulation computer programs. In this way we obtain and discuss pictures of the sunrise in the Lepenski Vir during winter and summer solstice and spring and autumn equinox in relation to position of the mountains, especially Treskavac (Trescovat) and Kukuvija at left (nearly east) Danube riverside (in Romania). While mountain Kukuvija represents really the marker for the Sun in date of the winter solstice, mountain Treskavac, in despite to usual opinions, does not represent a real marker for the Sun in date of the summer solstice. Sun rises behind Treskavac, roughly speaking, between 22.April and 1. May. It corresponds to year period when heliacal rising of the Pleiades constellation occurs, which by many ancient cultures, e.g. Celts of northern Europe, denotes very beginning of the year. All this, in common with some archeological facts (house-shrine No.47 in the Lepenski Vir holds seven signs beside hearth which would correspond to the seven Pleiades stars), opens a possibility that Lepenski Vir was an ancient Pleiades constellation observatory.



قيم البحث

اقرأ أيضاً

235 - Amelia Sparavigna 2008
In the ancient Egypt seven goddesses, represented by seven cows, composed the celestial herd that provides the nourishment to her worshippers. This herd is observed in the sky as a group of stars, the Pleiades, close to Aldebaran, the main star in th e Taurus constellation. For many ancient populations, Pleiades were relevant stars and their rising was marked as a special time of the year. In this paper, we will discuss the presence of these stars in ancient cultures. Moreover, we will report some results of archeoastronomy on the role for timekeeping of these stars, results which show that for hunter-gatherers at Palaeolithic times, they were linked to the seasonal cycles of aurochs.
The aim of this project is to review and expand upon the model proposed by Father Jose Domingo Duquesne de la Madrid (1745-1821) regarding the calendar of the ancient Muisca culture of the central Colombia. This model was dismissed by scholars in the late 19th century, calling it just a simple invention of a clergyman; however, a detailed analysis of Duquesnes work shows that his interpretation of the timekeeping system was based on information given to him by indigenous informers. Based on his work, we can be derive somewhat indirectly, some aspects of the calendar that apparently were not understood by the priest. This confirms that such a system was not his own invention. Ethnohistorical and archaeological evidence provide support for Duquesnes calendar model. Massive Muisca ceremonies described by 16th century Spanish chroniclers, is examined and; the occurrence of such ceremonies seem to match the astronomical cycle of conjunctions of the planets Jupiter and Saturn, wich also agrees with the 60-year span described by Duquesne as the Muisca Acrotom Century. Archaeological artifacts, such as a carved stone found in the village of Choachi (Cundinamarca) that shows numerical elements supports Duquesnes model that suggests this stone was a calendar calculation tool for Muisca priests.
Using the most recent proper-motion determination of the old, Solar-metallicity, Galactic open cluster M 67, in orbital computations in a non-axisymmetric model of the Milky Way, including a bar and 3D spiral arms, we explore the possibility that the Sun once belonged to this cluster. We have performed Monte Carlo numerical simulations to generate the present-day orbital conditions of the Sun and M 67, and all the parameters in the Galactic model. We compute 3.5 times 10^5 pairs of orbits Sun-M 67 looking for close encounters in the past with a minimum distance approach within the tidal radius of M 67. In these encounters we find that the relative velocity between the Sun and M 67 is larger than 20 km/s. If the Sun had been ejected from M 67 with this high velocity by means of a three-body encounter, this interaction would destroy an initial circumstellar disk around the Sun, or disperse its already formed planets. We also find a very low probability, much less than 10^-7, that the Sun was ejected from M 67 by an encounter of this cluster with a giant molecular cloud. This study also excludes the possibility that the Sun and M 67 were born in the same molecular cloud. Our dynamical results convincingly demonstrate that M67 could not have been the birth cluster of our Solar System.
115 - Jean Bricmont 2017
The goal of this paper is to explain how the views of Albert Einstein, John Bell and others, about nonlocality and the conceptual issues raised by quantum mechanics, have been rather systematically misunderstood by the majority of physicists.
While Transiting Exoplanet Survey Satellite (TESS) covers a considerable area of the sky during routine observations and the pointing schedule is easy to follow, it is not obvious to retrieve the current and/or predicted visibility of a bulk amount o f objects, considering both stationary and moving Solar System targets like asteroids or comets. The program `tessvisibility` is a small piece of highly portable code implemented in both C an UNIX shell, providing functionalities for such bulk retrievals at the accuracy of a TESS pixel. This accuracy includes the gaps between the focal plane CCDs, the gaps between the cameras as well as at the sector-level treatment to obtain visibility information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا