ﻻ يوجد ملخص باللغة العربية
The presence of magnetic fields in galaxy clusters has been well established in recent years, and their importance for the understanding of the physical processes at work in the Intra Cluster Medium has been recognized. Halo and relic sources have been detected in several tens clusters. A strong correlation is present between the halo and relic radio power and the X-ray luminosity. Since cluster X-Ray luminosity and mass are related, the correlation between the radio power and X-ray luminosity could derive from a physical dependence of the radio power on the cluster mass, therefore the cluster mass could be a crucial parameter in the formation of these sources. The goal of this project is to investigate the existence of non-thermal structures beyond the Mpc scale, and associated with lower density regions with respect to clusters of galaxies: galaxy filaments connecting rich clusters. We present a piece of evidence of diffuse radio emission in intergalactic filaments. Moreover, we present and discuss the detection of radio emission in galaxy groups and in faint X-Ray clusters, to analyze non-thermal properties in low density regions with physical conditions similar to galaxy filaments. We discuss how SKA1 observations will allow the investigation of this topic and the study of the presence of diffuse radio sources in low density regions. This will be a fundamental step to understand the origin and properties of cosmological magnetic fields.
We present the first very-long-baseline interferometry (VLBI) detections of Zeeman splitting in another galaxy. We used Arecibo Observatory, the Green Bank Telescope, and the Very Long Baseline Array to perform dual-polarization observations of OH ma
The study of velocity fields of the hot gas in galaxy clusters can help to unravel details of microphysics on small-scales and to decipher the nature of feedback by active galactic nuclei (AGN). Likewise, magnetic fields as traced by Faraday rotation
Radio galaxy phenomenon is directly connected to mass accreting, spinning supermassive black holes found in the active galactic nuclei (AGN). It is still unclear how the collimated jets of relativistic plasma on hundreds to thousands of kpc scale for
Magnetic fields are an important ingredient of the interstellar medium (ISM). Besides their importance for star formation, they govern the transport of cosmic rays, relevant to the launch and regulation of galactic outflows and winds, which in turn a
We extend previous work modeling the Galactic magnetic field in the plane using synchrotron emission in total and polarised intensity. In this work, we include a more realistic treatment of the cosmic-ray electrons using the GALPROP propagation code