ﻻ يوجد ملخص باللغة العربية
Let ${mathcal I}(n)$ denote the moduli space of rank $2$ instanton bundles of charge $n$ on ${mathbb P}^3$. We know from several authors that ${mathcal I}(n)$ is an irreducible, nonsingular and affine variety of dimension $8n-3$. Since every rank $2$ instanton bundle on ${mathbb P}^3$ is stable, we may regard ${mathcal I}(n)$ as an open subset of the projective Gieseker--Maruyama moduli scheme ${mathcal M}(n)$ of rank $2$ semistable torsion free sheaves $F$ on ${mathbb P}^3$ with Chern classes $c_1=c_3=0$ and $c_2=n$, and consider the closure $overline{{mathcal I}(n)}$ of ${mathcal I}(n)$ in ${mathcal M}(n)$. We construct some of the irreducible components of dimension $8n-4$ of the boundary $partial{mathcal I}(n):=overline{{mathcal I}(n)}setminus{mathcal I}(n)$. These components generically lie in the smooth locus of ${mathcal M}(n)$ and consist of rank $2$ torsion free instanton sheaves with singularities along rational curves.
The slope of the moduli space of genus g curves is bounded from below by 60/(g+4) via a descendent calculation.
We study the irreducible components of the moduli space of instanton sheaves on $mathbb{P}^3$, that is rank 2 torsion free sheaves $E$ with $c_1(E)=c_3(E)=0$ satisfying $h^1(E(-2))=h^2(E(-2))=0$. In particular, we classify all instanton sheaves with
In order to obtain existence criteria for orthogonal instanton bundles on $mathbb{P}^n$, we provide a bijection between equivalence classes of orthogonal instanton bundles with no global sections and symmetric forms. Using such correspondence we are
Let $mathcal{M}(n,m;F bp^n)$ be the configuration space of $m$-tuples of pairwise distinct points in $F bp^n$, that is, the quotient of the set of $m$-tuples of pairwise distinct points in $F bp^n$ with respect to the diagonal action of ${rm PU}(1,n;
We prove that the Hilbert scheme of $k$ points on $mathbb{C}^2$ (Hilb$^k[mathbb{C}^2]$) is self-dual under three-dimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivarian