ﻻ يوجد ملخص باللغة العربية
We give integral equations for the generating function of the cummulants of the work done in a quench for the Kondo model in the thermodynamic limit. Our approach is based on an extension of the thermodynamic Bethe ansatz to non-equilibrium situations. This extension is made possible by use of a large $N$ expansion of the overlap between Bethe states. In particular, we make use of the Slavnov determinant formula for such overlaps, passing to a function-space representation of the Slavnov matrix . We leave the analysis of the resulting integral equations to future work.
The Jaynes-Cummings-Gaudin model describes a collection of $n$ spins coupled to an harmonic oscillator. It is known to be integrable, so one can define a moment map which associates to each point in phase-space the list of values of the $n+1$ conserv
Conduction electrons coupled to a mesoscopic superconducting island hosting Majorana bound states have been shown to display a topological Kondo effect with robust non-Fermi liquid correlations. With $M$ bound states coupled to $M$ leads, this is an
The collective and purely relaxational dynamics of quantum many-body systems after a quench at temperature $T=0$, from a disordered state to various phases is studied through the exact solution of the quantum Langevin equation of the spherical and th
We find the statistical weight of excitations at long times following a quench in the Kondo problem. The weights computed are directly related to the overlap between initial and final states that are, respectively, states close to the Kondo ground st
We extend the exact periodic Bethe Ansatz solution for one-dimensional bosons and fermions with delta-interaction and arbitrary internal degrees of freedom to the case of hard wall boundary conditions. We give an analysis of the ground state properti