ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification of finite simple amenable ${cal Z}$-stable $C^*$-algebras

174   0   0.0 ( 0 )
 نشر من قبل Huaxin Lin
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a classification theorem for a class of unital simple separable amenable ${cal Z}$-stable $C^*$-algebras by the Elliott invariant. This class of simple $C^*$-algebras exhausts all possible Elliott invariant for unital stably finite simple separable amenable ${cal Z}$-stable $C^*$-algebras. Moreover, it contains all unital simple separable amenable $C^*$-alegbras which satisfy the UCT and have finite rational tracial rank.



قيم البحث

اقرأ أيضاً

A class of $C^*$-algebras, to be called those of generalized tracial rank one, is introduced, and classified by the Elliott invariant. A second class of unital simple separable amenable $C^*$-algebras, those whose tensor products with UHF-algebras of infinite type are in the first class, to be referred to as those of rational generalized tracial rank one, is proved to exhaust all possible values of the Elliott invariant for unital finite simple separable amenable ${cal Z}$-stable $C^*$-algebras. An isomorphism theorem for a special sub-class of those $C^*$-algebras are presented. This provides the basis for the classification of $C^*$-algebras with rational generalized tracial rank one in Part II.
We prove that every unital stably finite simple amenable $C^*$-algebra $A$ with finite nuclear dimension and with UCT such that every trace is quasi-diagonal has the property that $Aotimes Q$ has generalized tracial rank at most one, where $Q$ is the universal UHF-algebra. Consequently, $A$ is classifiable in the sense of Elliott.
176 - Huaxin Lin 2009
Let $C$ and $A$ be two unital separable amenable simple C*-algebras with tracial rank no more than one. Suppose that $C$ satisfies the Universal Coefficient Theorem and suppose that $phi_1, phi_2: Cto A$ are two unital monomorphisms. We show that the re is a continuous path of unitaries ${u_t: tin [0, infty)}$ of $A$ such that $$ lim_{ttoinfty}u_t^*phi_1(c)u_t=phi_2(c)tforal cin C $$ if and only if $[phi_1]=[phi_2]$ in $KK(C,A),$ $phi_1^{ddag}=phi_2^{ddag},$ $(phi_1)_T=(phi_2)_T$ and a rotation related map $bar{R}_{phi_1,phi_2}$ associated with $phi_1$ and $phi_2$ is zero. Applying this result together with a result of W. Winter, we give a classification theorem for a class ${cal A}$ of unital separable simple amenable CA s which is strictly larger than the class of separable CA s whose tracial rank are zero or one. The class contains all unital simple ASH-algebras whose state spaces of $K_0$ are the same as the tracial state spaces as well as the simple inductive limits of dimension drop circle algebras. Moreover it contains some unital simple ASH-algebras whose $K_0$-groups are not Riesz. One consequence of the main result is that all unital simple AH-algebras which are ${cal Z}$-stable are isomorphic to ones with no dimension growth.
262 - Huaxin Lin 2013
Let $A$ be a unital separable simple ${cal Z}$-stable C*-algebra which has rational tracial rank at most one and let $uin U_0(A),$ the connected component of the unitary group of $A.$ We show that, for any $epsilon>0,$ there exists a self-adjoint ele ment $hin A$ such that $$ |u-exp(ih)|<epsilon. $$ The lower bound of $|h|$ could be as large as one wants. If $uin CU(A),$ the closure of the commutator subgroup of the unitary group, we prove that there exists a self-adjoint element $hin A$ such that $$ |u-exp(ih)| <epsilon and |h|le 2pi. $$ Examples are given that the bound $2pi$ for $|h|$ is the optimal in general. For the Jiang-Su algebra ${cal Z},$ we show that, if $uin U_0({cal Z})$ and $epsilon>0,$ there exists a real number $-pi<tle pi$ and a self-adjoint element $hin {cal Z}$ with $|h|le 2pi$ such that $$ |e^{it}u-exp(ih)|<epsilon. $$
153 - Huaxin Lin , Zhuang Niu 2008
We study the range of a classifiable class ${cal A}$ of unital separable simple amenable $C^*$-algebras which satisfy the Universal Coefficient Theorem. The class ${cal A}$ contains all unital simple AH-algebras. We show that all unital simple induct ive limits of dimension drop circle $C^*$-algebras are also in the class. This unifies some of the previous known classification results for unital simple amenable $C^*$-algebras. We also show that there are many other $C^*$-algebras in the class. We prove that, for any partially ordered, simple weakly unperforated rationally Riesz group $G_0$ with order unit $u,$ any countable abelian group $G_1,$ any metrizable Choquet simplex $S,$ and any surjective affine continuous map $r: Sto S_u(G_0)$ (where $S_u(G_0)$ is the state space of $G_0$) which preserves extremal points, there exists one and only one (up to isomorphism) unital separable simple amenable $C^*$-algebra $A$ in the classifiable class ${cal A}$ such that $$ ((K_0(A), K_0(A)_+, [1_A]), K_1(A), T(A), lambda_A)=((G_0, (G_0)_+, u), G_1,S, r).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا