ﻻ يوجد ملخص باللغة العربية
We introduce a driven diffusive model involving poly-dispersed hard k-mers on a one dimensional periodic ring and investigate the possibility of phase separation transition in such systems. The dynamics consists of a size dependent directional drive and reconstitution of k-mers. The reconstitution dynamics constrained to occur among consecutive immobile k-mers allows them to change their size while keeping the total number of k-mers and the volume occupied by them conserved. We show by mapping the model to a two species misanthrope process that its steady state has a factorized form. Along with a fluid phase, the interplay of drift and reconstitution can generate a macroscopic k-mer, or a slow moving k-mer with a macroscopic void in front of it, or both. We demonstrate this phenomenon for some specific choice of drift and reconstitution rates and provide exact phase boundaries which separate the four phases.
Numerical simulations and finite-size scaling analysis have been carried out to study the problem of inverse site percolation by the removal of $k times k$ square tiles ($k^{2}$-mers) from square lattices. The process starts with an initial configura
In reconstituting k-mer models, extended objects which occupy several sites on a one dimensional lattice, undergo directed or undirected diffusion, and reconstitute -when in contact- by transferring a single monomer unit from one k-mer to the other;
Using a new approximate strong-randomness renormalization group (RG), we study the many-body localized (MBL) phase and phase transition in one-dimensional quantum systems with short-range interactions and quenched disorder. Our RG is built on those o
We introduce and analyze an exactly soluble one-dimensional Ising model with long range interactions which exhibits a mixed order transition (MOT), namely a phase transition in which the order parameter is discontinuous as in first order transitions
We introduce an assisted exchange model (AEM) on a one dimensional periodic lattice with (K+1) different species of hard core particles, where the exchange rate depends on the pair of particles which undergo exchange and their immediate left neighbor