ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Amplitude, Rapid Photometric Variation of the New Polar MASTER OT J132104.04+560957.8

126   0   0.0 ( 0 )
 نشر من قبل Colin Littlefield
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present photometric and spectroscopic observations of the cataclysmic variable MASTER OT J132104.04+560957.8 which strongly indicate that it is a polar with an orbital period of 91 minutes. The optical light curve shows two maxima and two minima per orbital cycle, with considerable variation in the strength of the secondary maximum and in the morphology and depth of the minima.



قيم البحث

اقرأ أيضاً

We present time-resolved photometry and spectroscopy of the recently classified polar MASTER OT J132104.04+560957.8. The spectrum shows a smooth, non-thermal continuum at the time of maximum light, without any individually discernible cyclotron harmo nics. Using homogeneous cyclotron modeling, we interpret this as cyclotron radiation whose individual harmonics have blended together, and on this basis, we loosely constrain the magnetic field strength to be less than ~30 MG. In addition, for about one-tenth of the orbital period, the Balmer and He I emission lines transition into absorption features, with He II developing an absorption core. We use our observations of this phenomenon to test theoretical models of the accretion curtain and conclude that the H and He I lines are produced throughout the curtain, in contravention of theoretical predictions of separate H and He I line-forming regions. Moreover, a significant amount of He II emission originates within the accretion curtain, implying that the curtain is significantly hotter than expected from theory. Finally, we comment on the objects long-term photometry, including evidence that it recently transitioned into a prolonged, exceptionally stable high state following a potentially decades-long low state.
We report the discovery of a new eclipsing polar, MASTER OT J061451.70-272535.5, detected as an optical transient by MASTER auto-detection software at the recently commissioned MASTER-SAAO telescope. Time resolved (10-20 s) photometry with the SAAO 1 .9-m, and 1.0-m telescopes, utilizing the SHOC EM-CCD cameras, revealed that the source eclipses, with a period of 2.08 hours (7482.9$pm$3.5$,$s). The eclipse light curve has a peculiar morphology, comprising an initial dip, where the source brightness drops to ${sim}$50% of the pre-eclipse level before gradually increasing again in brightness. A second rapid ingress follows, where the brightness drops by ${sim}$60-80%, followed by a more gradual decrease to zero flux. We interpret the eclipse profile as the result of an initial obscuration of the accretion hot-spot on the magnetic white dwarf by the accretion stream, followed by an eclipse of both the hot-spot and the partially illuminated stream by the red dwarf donor star. This is similar to what has been observed in other eclipsing polars such as HU Aqr, but here the stream absorption is more pronounced. The object was subsequently observed with South African Large Telescope (SALT) using the Robert Stobie Spectrograph (RSS). This revealed a spectrum with all of the Balmer lines in emission, a strong HeII 4686AA{} line with a peak flux greater than that of H$beta$, as well as weaker HeI lines. The spectral features, along with the structure of the light curve, suggest that MASTER OT J061451.70-272535.5 is a new magnetic cataclysmic variable, most likely of the synchronised Polar subclass.
We report on photometric observations of WZ Sge-type dwarf novae, MASTER OT J211258.65+242145.4 and MASTER OT J203749.39+552210.3 which underwent outbursts in 2012. Early superhumps were recorded in both systems. During superoutburst plateau, ordinar y superhumps with a period of 0.060291(4) d (MASTER J211258) and of 0.061307(9) d (MASTER J203749) in average were observed. MASTER J211258 and MASTER J203749 exhibited eight and more than four post-superoutburst rebrightenings, respectively. In the final part of the superoutburst, an increase in the superhump periods was seen in both systems. We have made a survey of WZ Sge-type dwarf novae with multiple rebrightenings, and confirmed that the superhump periods of WZ Sge-type dwarf novae with multiple rebrightenings were longer than those of WZ Sge-type dwarf novae without a rebrightening. Although WZ Sge-type dwarf novae with multiple rebrightenings have been thought to be the good candidates for period bouncers based on their low mass ratio (q) from inferred from the period of fully grown (stage B) superhumps, our new method using the period of growing superhumps (stage A superhumps), however, implies higher q than those expected from stage B superhumps. These q values appear to be consistent with the duration of the stage A superoutbursts, which likely reflects the growth time of the 3:1 resonance. We present a working hypothesis that the small fractional superhump excesses for stage B superhumps in these systems may be explained as a result that a higher gas pressure effect works in these systems than in ordinary SU UMa-type dwarf novae. This result leads to a new picture that WZ Sge-type dwarf novae with multiple rebrightenings and SU UMa-type dwarf novae without a rebrightening (they are not period bouncers) are located in the same place on the evolutionary track.
149 - C. Ulusoy , B. Ulac{s} , T. Gulmez 2013
We present results of a multi-site photometric campaign on the high-amplitude $delta$,Scuti star KIC,6382916 in the {it Kepler} field. The star was observed over a 85-d interval at five different sites in North America and Europe during 2011. {it Kep ler} photometry and ground-based multicolour light curves of KIC,6382916 are used to investigate the pulsational content and to identify the principal modes. High-dispersion spectroscopy was also obtained in order to derive the stellar parameters and projected rotational velocity. From an analysis of the {it Kepler} time series, three independent frequencies and a few hundred combination frequencies are found. The light curve is dominated by two modes with frequencies $f_{1}$= 4.9107 and $f_{2}$= 6.4314,d$^{-1}$. The third mode with $f_{3}$= 8.0350,d$^{-1}$ has a much lower amplitude. We attempt mode identification by examining the amplitude ratios and phase differences in different wavebands from multicolour photometry and comparing them to calculations for different spherical harmonic degree, $l$. We find that the theoretical models for $f_1$ and $f_2$ are in a best agreement with the observations and lead to value of l = 1 modes, but the mode identification of $f_3$ is uncertain due to its low amplitude. Non-adiabatic pulsation models show that frequencies below 6,d$^{-1}$ are stable, which means that the low frequency of $f_1$ cannot be reproduced. This is further confirmation that current models predict a narrower pulsation frequency range than actually observed.
We report on the MASTER Global Robotic Net discovery of an eclipsing binary, MASTER OT J095310.04+335352.8, previously known as unremarkable star TYC 2505-672-1, which displays extreme orbital parameters. The orbital period P=69.1 yr is more than 2.5 times longer than that of epsilon-Aurigae, which is the previous record holder. The light curve is characterized by an extremely deep total eclipse with a depth of more than 4.5 mag, which is symmetrically shaped and has a total duration of 3.5 yrs. The eclipse is essentially gray. The spectra acquired with the Russian 6 m BTA telescope both at minimum and maximum light mainly correspond to an M0-1III--type red giant, but the spectra taken at the bottom of eclipse show small traces of a sufficiently hot source. The observed properties of this system can be better explained as the red giant eclipsed by a large cloud (the disk) of small particles surrounding the invisible secondary companion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا