ترغب بنشر مسار تعليمي؟ اضغط هنا

Exciton binding energies and luminescence of phosphorene under pressure

126   0   0.0 ( 0 )
 نشر من قبل Leandro Seixas
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The optical response of phosphorene can be gradually changed by application of moderate uniaxial compression, as the material undergoes the transition into an indirect gap semiconductor and eventually into a semimetal. Strain tunes not only the gap between the valence band and conduction band local extrema, but also the effective masses, and in consequence, the exciton anisotropy and binding strength. In this article, we consider from a theoretical point of view how the exciton stability and the resulting luminescence energy evolves under uniaxial strain. We find that the exciton binding energy can be as large as 0.87 eV in vacuum for 5% transverse strain, placing it amongst the highest for 2D materials. Further, the large shift of the luminescence peak and its linear dependence on strain suggest that it can be used to probe directly the strain state of single-layers.



قيم البحث

اقرأ أيضاً

One- and two-photon luminescence excitation spectroscopy showed a series of distinct excitonic states in single-walled carbon nanotubes. The energy splitting between one- and two-photon-active exciton states of different wavefunction symmetry is the fingerprint of excitonic interactions in carbon nanotubes. We determine exciton binding energies of 0.3-0.4 eV for different nanotubes with diameters between 0.7 and 0.9 nm. Our results, which are supported by ab-initio calculations of the linear and non-linear optical spectra, prove that the elementary optical excitations of carbon nanotubes are strongly Coulomb-correlated, quasi-one dimensionally confined electron-hole pairs, stable even at room temperature. This alters our microscopic understanding of both the electronic structure and the Coulomb interactions in carbon nanotubes, and has direct impact on the optical and transport properties of novel nanotube devices.
Excitons are electron-hole pairs appearing below the band gap in insulators and semiconductors. They are vital to photovoltaics, but are hard to obtain with time-dependent density-functional theory (TDDFT), since most standard exchange-correlation (x c) functionals lack the proper long-range behavior. Furthermore, optical spectra of bulk solids calculated with TDDFT often lack the required resolution to distinguish discrete, weakly bound excitons from the continuum. We adapt the Casida equation formalism for molecular excitations to periodic solids, which allows us to obtain exciton binding energies directly. We calculate exciton binding energies for both small- and large-gap semiconductors and insulators, study the recently proposed bootstrap xc kernel [S. Sharma et al., Phys. Rev. Lett. 107, 186401 (2011)], and extend the formalism to triplet excitons.
Monolayer phosphorene provides a unique two-dimensional (2D) platform to investigate the fundamental dynamics of excitons and trions (charged excitons) in reduced dimensions. However, owing to its high instability, unambiguous identification of monol ayer phosphorene has been elusive. Consequently, many important fundamental properties, such as exciton dynamics, remain underexplored. We report a rapid, noninvasive, and highly accurate approach based on optical interferometry to determine the layer number of phosphorene, and confirm the results with reliable photoluminescence measurements. Furthermore, we successfully probed the dynamics of excitons and trions in monolayer phosphorene by controlling the photo-carrier injection in a relatively low excitation power range. Based on our measured optical gap and the previously measured electronic energy gap, we determined the exciton binding energy to be ~0.3 eV for the monolayer phosphorene on SiO2/Si substrate, which agrees well with theoretical predictions. A huge trion binding energy of ~100 meV was first observed in monolayer phosphorene, which is around five times higher than that in transition metal dichalcogenide (TMD) monolayer semiconductor, such as MoS2. The carrier lifetime of exciton emission in monolayer phosphorene was measured to be ~220 ps, which is comparable to those in other 2D TMD semiconductors. Our results open new avenues for exploring fundamental phenomena and novel optoelectronic applications using monolayer phosphorene.
The electronic and optical properties of monolayer transition-metal dichalcogenides (TMDs) and van der Waals heterostructures are strongly subject to their dielectric environment. In each layer the field lines of the Coulomb interaction are screened by the adjacent material, which reduces the single-particle band gap as well as exciton and trion binding energies. By combining an electrostatic model for a dielectric hetero-multi-layered environment with semiconductor many-particle methods, we demonstrate that the electronic and optical properties are sensitive to the interlayer distances on the atomic scale. Spectroscopical measurements in combination with a direct solution of a three-particle Schrodinger equation reveal trion binding energies that correctly predict recently measured interlayer distances.
Two-dimensional (2D) monolayer phosphorene, a 2D system with quasi-one-dimensional (quasi-1D) excitons, provides a unique 2D platform for investigating the dynamics of excitons in reduced dimensions and fundamental many-body interactions. However, on the other hand, the quasi-1D excitonic nature can limit the luminescence quantum yield significantly. Here, we report exciton brightening in monolayer phosphorene achieved via the dimensionality modification of excitons from quasi-1D to zero-dimensional (0D), through the transference of monolayer phosphorene samples onto defect-rich oxide substrate deposited by plasma-enhanced chemical vapor deposition (PECVD). The resultant interfacial luminescent local states lead to exciton localization and trigger efficient photon emissions at a new wavelength of ~920 nm. The luminescence quantum yield of 0D-like localized excitons is measured to be at least 33.6 times larger than that of intrinsic quasi-1D free excitons in monolayer phosphorene. This is primarily due to the reduction of non-radiative decay rate and the possibly enhanced radiative recombination probability. Owing to the large trapping energy, this new photon emission from the localized excitons in monolayer phosphorene can be observed at elevated temperature, which contrasts markedly with defect-induced photon emission from transition metal dichalcogenide (TMD) semiconductor monolayers that can only be observed at cryogenic temperatures. Our findings introduce new avenues for the development of novel photonic devices based on monolayer phosphorene, such as near-infrared lighting devices that are operable at elevated temperature. More importantly, 2D phosphorene with quasi-1D free excitons and 0D-like localized excitons provides a unique platform to investigate the fundamental phenomena in the ideal 2D-1D-0D hybrid system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا