ﻻ يوجد ملخص باللغة العربية
The optical response of phosphorene can be gradually changed by application of moderate uniaxial compression, as the material undergoes the transition into an indirect gap semiconductor and eventually into a semimetal. Strain tunes not only the gap between the valence band and conduction band local extrema, but also the effective masses, and in consequence, the exciton anisotropy and binding strength. In this article, we consider from a theoretical point of view how the exciton stability and the resulting luminescence energy evolves under uniaxial strain. We find that the exciton binding energy can be as large as 0.87 eV in vacuum for 5% transverse strain, placing it amongst the highest for 2D materials. Further, the large shift of the luminescence peak and its linear dependence on strain suggest that it can be used to probe directly the strain state of single-layers.
One- and two-photon luminescence excitation spectroscopy showed a series of distinct excitonic states in single-walled carbon nanotubes. The energy splitting between one- and two-photon-active exciton states of different wavefunction symmetry is the
Excitons are electron-hole pairs appearing below the band gap in insulators and semiconductors. They are vital to photovoltaics, but are hard to obtain with time-dependent density-functional theory (TDDFT), since most standard exchange-correlation (x
Monolayer phosphorene provides a unique two-dimensional (2D) platform to investigate the fundamental dynamics of excitons and trions (charged excitons) in reduced dimensions. However, owing to its high instability, unambiguous identification of monol
The electronic and optical properties of monolayer transition-metal dichalcogenides (TMDs) and van der Waals heterostructures are strongly subject to their dielectric environment. In each layer the field lines of the Coulomb interaction are screened
Two-dimensional (2D) monolayer phosphorene, a 2D system with quasi-one-dimensional (quasi-1D) excitons, provides a unique 2D platform for investigating the dynamics of excitons in reduced dimensions and fundamental many-body interactions. However, on