ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermiology of 122 family of Fe-based superconductors: An ab initio study

156   0   0.0 ( 0 )
 نشر من قبل Smritijit Sen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fermiology of various 122 systems are studied through first principles simulation. Electron doping causes expansion of electron and shrinkage of hole Fermi pockets. Isovalent Ru substitution (upto 35%) makes no visible modification in the electron and hole like FSs providing no clue regarding the nature of charge carrier doping. However, in case of 32% P doping there are considerable changes in the hole Fermi surfaces (FSs). From our calculations, it is very clear that two dimensionality of FSs may favour electron pair scattering between quasi-nested FSs which has important bearings in various orders (magnetic, orbital, superconducting) present in Fe-based superconductors.



قيم البحث

اقرأ أيضاً

We report the first-principles study of superconducting critical temperature and superconducting properties of Fe-based superconductors taking into account on the same footing phonon, charge and spin-fluctuation mediated Cooper pairing. We show that in FeSe this leads to a modulated s$pm$ gap symmetry, and that the antiferromagnetic paramagnons are the leading mechanism for superconductivity in FeSe, overcoming the strong repulsive effect of both phonons and charge pairing.
Direct quantitative correlations between the orbital order and orthorhombicity is achieved in a number of Fe-based superconductors of 122 family. The former (orbital order) is calculated from first principles simulations using experimentally determin ed doping and temperature dependent structural parameters while the latter (the orthorhombicity) is taken from already established experimental studies; when normalized, both the above quantities quantitatively corresponds to each other in terms of their doping as well as temperature variations. This proves that the structural transition in Fe-based materials is electronic in nature due to orbital ordering. An universal correlations among various structural parameters and electronic structure are also obtained. Most remarkable among them is the mapping of two Fe--Fe distances in the low temperature orthorhombic phase, with the band energies E$_{d_{xz}}$, E$_{d_{yz}}$ of Fe at the high symmetry points of the Brillouin zone. The fractional co-ordinate $z_{As}$ of $As$ which essentially determines anion height is inversely (directly) proportional to Fe-As bond distances (with exceptions of K doped BaFe$_2$As$_2$) for hole (electron) doped materials as a function of doping. On the other hand, Fe-As bond-distance is found to be inversely (directly) proportional to the density of states at the Fermi level for hole (electron) doped systems. Implications of these results to current issues of Fe based superconductivity are discussed.
We show that only a few percentage of Sn doping at the Ba site on BaFe$_2$As$_2$, can cause electronic topological transition, namely, the Lifshitz transition. A hole like d$_{xy}$ band of Fe undergoes electron like transition due to 4% Sn doping. Li fshitz transition is found in BaFe$_2$As$_2$ system around all the high symmetry points. Our detailed first principles simulation predicts absence of any Lifshitz transition in other 122 family compounds like SrFe$_2$As$_2$, CaFe$_2$As$_2$. This work bears practical significance due to the facts that a few percentage of Sn impurity is in-built in tin-flux grown single crystals method of synthesizing 122 materials and inter-relationship among the Lifshitz transition, magnetism and superconductivity.
We report on the results of directional point-contact Andreev-reflection (PCAR) measurements in Ba(Fe_{1-x}Co_x)2As2 single crystals and epitaxial c-axis oriented films with x = 0.08 as well as in Ca(Fe_{1-x}Co_x)2As2 single crystals with x = 0.06. T he PCAR spectra are analyzed within the two-band 3D version of the Blonder-Tinkham-Klapwijk model for Andreev reflection we recently developed, and that makes use of an analytical expression for the Fermi surface that mimics the one calculated within the density-functional theory (DFT). The spectra in Ca(Fe_{0.94}Co_{0.06})2As2 unambiguously demonstrate the presence of nodes or zeros in the small gap. In Ba(Fe_{0.92}Co_{0.08})2As2, the ab-plane spectra in single crystals can be fitted by assuming two nodeless gaps, but this model fails to fit the c-axis ones in epitaxial films. All these results are discussed in comparison with recent theoretical predictions about the occurrence of accidental 3D nodes and the presence of hot spots in the gaps of 122 compounds.
100 - E. Bourgeois 2007
We study within a first-principle approach the band structure, vibrational modes and electron-phonon coupling in boron, aluminum and phosphorus doped silicon in the diamond phase. Our results provide evidences that the recently discovered superconduc ting transition in boron doped cubic silicon can be explained within a standard phonon-mediated mechanism. The importance of lattice compression and dopant related stretching modes are emphasized. We find that T$_C$ can be increased by one order of magnitude by adopting aluminum doping instead of boron.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا