ﻻ يوجد ملخص باللغة العربية
Interfacing between various elements of a computer - from memory to processors to long range communication - will be as critical for quantum computers as it is for classical computers today. Paramagnetic rare earth doped crystals, such as Nd$^{3+}$:Y$_2$SiO$_5$ (YSO), are excellent candidates for such a quantum interface: they are known to exhibit long optical coherence lifetimes (for communication via optical photons), possess a nuclear spin (memory) and have in addition an electron spin that can offer hybrid coupling with superconducting qubits (processing). Here we study two of these three elements, demonstrating coherent storage and retrieval between electron and $^{145}$Nd nuclear spin states in Nd$^{3+}$:YSO. We find nuclear spin coherence times can reach 9 ms at $approx 5$ K, about two orders of magnitude longer than the electron spin coherence, while quantum state and process tomography of the storage/retrieval operation reveal an average state fidelity of 0.86. The times and fidelities are expected to further improve at lower temperatures and with more homogeneous radio-frequency excitation.
Rare-earth-doped crystals are excellent hardware for quantum storage of optical information. Additional functionality of these materials is added by their waveguiding properties allowing for on-chip photonic networks. However, detection and coherent
A long-lived multi-mode qubit register is an enabling technology for modular quantum computing architectures. For interfacing with superconducting qubits, such a quantum memory should be able to store incoming quantum microwave fields at the single-p
We have demonstrated electron-electron and electron-nuclear spin manipulations of Gd3+ ion in CaWO4 crystal. The results suggest that the studied system is perspective for multiqubit implementation in quantum computing.
Ensembles of solid-state optical emitters enable broadband quantum storage and transduction of photonic qubits, with applications in high-rate optical quantum networks for secure communications, global time-keeping, and interconnecting future quantum
We perform an investigation into the properties of Pr3+:Y2SiO5 whispering gallery mode resonators as a first step towards achieving the strong coupling regime of cavity QED with rare-earth-ion doped crystals. Direct measurement of cavity QED paramete