ﻻ يوجد ملخص باللغة العربية
We compute the zero-temperature dynamical structure factor of one-dimensional liquid $^4$He by means of state-of-the-art Quantum Monte Carlo and analytic continuation techniques. By increasing the density, the dynamical structure factor reveals a transition from a highly compressible critical liquid to a quasi-solid regime. In the low-energy limit, the dynamical structure factor can be described by the quantum hydrodynamic Luttinger liquid theory, with a Luttinger parameter spanning all possible values by increasing the density. At higher energies, our approach provides quantitative results beyond the Luttinger liquid theory. In particular, as the density increases, the interplay between dimensionality and interaction makes the dynamical structure factor manifest a pseudo {it{particle-hole}} continuum typical of fermionic systems. At the low-energy boundary of such region and moderate densities, we find consistency, within statistical uncertainties, with predictions of a power-law structure by the recently-developed non-linear Luttinger liquid theory. In the quasi-solid regime we observe a novel behavior at intermediate momenta, which can be described by new analytical relations that we derive for the hard-rods model.
We study the response of one-dimensional liquid $^4$He to weak perturbations relying on the dynamical structure factor, $S(q,omega)$, recently obtained via ab-initio techniques [Phys. Rev. Lett. 116, 135302 (2016)]. We evaluate the drag force, $F_v$,
The ground state and structure of a one-dimensional Bose gas with dipolar repulsions is investigated at zero temperature by a combined Reptation Quantum Monte Carlo (RQMC) and bosonization approach. A non trivial Luttinger-liquid behavior emerges in
Interactions are known to have dramatic effects on bosonic gases in one dimension (1D). Not only does the ground state transform from a condensate-like state to an effective Fermi sea, but new fundamental excitations, which do not have any higher-dim
The ground-state properties of one-dimensional 3He are studied using quantum Monte Carlo methods. The equation of state is calculated in a wide range of physically relevant densities and is well reproduced by a power-series fit. The Luttinger liquid
In this paper we review recent theoretical results for transport in a one-dimensional (1d) Luttinger liquid. For simplicity, we ignore electron spin, and focus exclusively on the case of a single-mode. Moreover, we consider only the effects of a sing