ﻻ يوجد ملخص باللغة العربية
Using the latest observational data we obtain a lower bound on the initial value of the quintessence field in thawing quintessence models of dark energy. For potentials of the form V(phi) phi^{pm2} we find that the initial value |phi_i|>7x10^{18}gev. We then relate phi_i to the duration of inflation by assuming that the initial value of the quintessence field is determined by quantum fluctuations of the quintessence field during inflation. From the lower bound on $phi_i$ we obtain a lower bound on the number of e-foldings of inflation, namely, N>2x10^{11}. We obtain similar bounds for other power law potentials for which too we obtain |phi_{i}|>O(M_{P}.
We apply the Effective Field Theory of Large-Scale Structure (EFTofLSS) to analyze cosmological models with clustering quintessence, which allows us to consistently describe the parameter region in which the quintessence equation of state $w < - 1$.
Inflation may provide unique insight into the physics at the highest available energy scales that cannot be replicated in any realistic terrestrial experiment. Features in the primordial power spectrum are generically predicted in a wide class of mod
We use a dynamical systems approach to study thawing quintessence models, using a multi-parameter extension of the exponential potential which can approximate the form of typical thawing potentials. We impose observational constraints using a compila
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often igno
We explore the different meanings of quantum uncertainty contained in Heisenbergs seminal paper from 1927, and also some of the precise definitions that were explored later. We recount the controversy about Anschaulichkeit, visualizability of the the