ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling Ferro- and Antiferromagnetic Interactions in Metal-Organic Coordination Networks

183   0   0.0 ( 0 )
 نشر من قبل Andres Arnau
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetization curves of two rectangular metal-organic coordination networks formed by the organic ligand TCNQ (7,7,8,8-tetracyanoquinodimethane) and two different (Mn and Ni) 3d transition metal atoms [M(3d)] show marked differences that are explained using first principles density functional theory and model calculations. We find that the existence of a weakly dispersive hybrid band with M(3d) and TCNQ character crossing the Fermi level is determinant for the appearance of ferromagnetic coupling between metal centers, as it is the case of the metallic system Ni-TCNQ but not of the insulating system Mn-TCNQ. The spin magnetic moment localized at the Ni atoms induces a significant spin polarization in the organic molecule; the corresponding spin density being delocalized along the whole system. The exchange interaction between localized spins at Ni centers and the itinerant spin density is ferromagnetic. Based on two different model Hamiltonians, we estimate the strength of exchange couplings between magnetic atoms for both Ni- and Mn-TCNQ networks that results in weak ferromagnetic and very weak antiferromagnetic correlations for Ni- and Mn-TCNQ networks, respectively.



قيم البحث

اقرأ أيضاً

The magnetic anisotropy and exchange coupling between spins localized at the positions of 3d transition metal atoms forming two-dimensional metal-organic coordination networks (MOCNs) grown on the Au(111) metal surface are studied. In particular, we consider MOCNs made of Ni or Mn metal centers linked by TCNQ (7,7,8,8-tetracyanoquinodimethane) organic ligands, which form rectangular networks with 1:1 stoichiometry. Based on the analysis of X-ray magnetic circular dichroism (XMCD) data taken at T= 2.5 K, we find that Ni atoms in the Ni-TCNQ MOCNs are coupled ferromagnetically and do not show any significant magnetic anisotropy, while Mn atoms in the Mn-TCNQ MOCNs are coupled antiferromagnetically and do show a weak magnetic anisotropy with in-planemagnetization. We explain these observations using both amodelHamiltonian based on mean-fieldWeiss theory and density functional theory calculations that include spin-orbit coupling. Our main conclusion is that the antiferromagnetic coupling between Mn spins and the in-plane magnetization of the Mn spins can be explained neglecting effects due to the presence of the Au(111) surface, while for Ni-TCNQ the metal surface plays a role in determining the absence of magnetic anisotropy in the system.
The interface formation between copper phthalocyanine (CuPc) and two representative metal substrates, i.e., Au and Co, was investigated by the combination of ultraviolet photoelectron spectroscopy and inverse photoelectron spectroscopy. The occupied and unoccupied molecular orbitals and thus the transport band gap of CuPc are highly influenced by film thickness, i.e., molecule-substrate distance. Due to the image charge potential given by the metallic substrates the transport band gap of CuPc opens from $(1.4 pm 0.3)$ eV for 1 nm thickness to $(2.2 pm 0.3)$ eV, and saturates at this value above 10 nm CuPc thickness. The interface dipoles with values of 1.2 eV and 1.0 eV for Au and Co substrates, respectively, predominantly depend on the metal substrate work functions. X-ray photoelectron spectroscopy measurements using synchrotron radiation provide detailed information on the interaction between CuPc and the two metal substrates. While charge transfer from the Au or Co substrate to the Cu metal center is present only at sub-monolayer coverages, the authors observe a net charge transfer from the molecule to the Co substrate for films in the nm range. Consequently, the Fermi level is shifted as in the case of a p-type doping of the molecule. This is, however, a competing phenomenon to the energy band shifts due to the image charge potential.
Van der Waals (vdW) solids, as a new type of artificial materials that consist of alternating layers bonded by weak interactions, have shed light on fascinating optoelectronic device concepts. As a result, a large variety of vdW devices have been eng ineered via layer-by-layer stacking of two-dimensional materials, although shadowed by the difficulties of fabrication. Alternatively, direct growth of vdW solids has proven as a scalable and swift way, highlighted by the successful synthesis of graphene/h-BN and transition metal dichalcogenides (TMDs) vertical heterostructures from controlled vapor deposition. Here, we realize high-quality organic and inorganic vdW solids, using methylammonium lead halide (CH3NH3PbI3) as the organic part (organic perovskite) and 2D inorganic monolayers as counterparts. By stacking on various 2D monolayers, the vdW solids behave dramatically different in light emission. Our studies demonstrate that h-BN monolayer is a great complement to organic perovskite for preserving its original optical properties. As a result, organic/h-BN vdW solid arrays are patterned for red light emitting. This work paves the way for designing unprecedented vdW solids with great potential for a wide spectrum of applications in optoelectronics.
Rechargeable lithium ion batteries are an attractive alternative power source for a wide variety of applications. To optimize their performances, a complete description of the solvation properties of the ion in the electrolyte is crucial. A comprehen sive understanding at the nanoscale of the solvation structure of lithium ions in nonaqueous carbonate electrolytes is, however, still unclear. We have measured by femtosecond vibrational spectroscopy the orientational correlation time of the CO stretching mode of Li+-bound and Li+-unbound ethylene carbonate molecules, in LiBF4, LiPF6, and LiClO4 ethylene carbonate solutions with different concentrations. Surprisingly, we have found that the coordination number of ethylene carbonate in the first solvation shell of Li+ is only two, in all solutions with concentrations higher than 0.5 M. Density functional theory calculations indicate that the presence of anions in the first coordination shell modifies the generally accepted tetrahedral structure of the complex, allowing only two EC molecules to coordinate to Li+ directly. Our results demonstrate for the first time, to the best of our knowledge, the anion influence on the overall structure of the first solvation shell of the Li+ ion. The formation of such a cation/solvent/anion complex provides a rational explanation for the ionic conductivity drop of lithium/carbonate electrolyte solutions at high concentrations.
From organic electronics to biological systems, understanding the role of intermolecular interactions between spin pairs is a key challenge. Here we show how such pairs can be selectively addressed with combined spin and optical sensitivity. We demon strate this for bound pairs of spin-triplet excitations formed by singlet fission, with direct applicability across a wide range of synthetic and biological systems. We show that the site-sensitivity of exchange coupling allows distinct triplet pairs to be resonantly addressed at different magnetic fields, tuning them between optically bright singlet (S=0) and dark triplet, quintet (S=1,2) configurations: this induces narrow holes in a broad optical emission spectrum, uncovering exchange-specific luminescence. Using fields up to 60 T, we identify three distinct triplet-pair sites, with exchange couplings varying over an order of magnitude (0.3-5 meV), each with its own luminescence spectrum, coexisting in a single material. Our results reveal how site-selectivity can be achieved for organic spin pairs in a broad range of systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا