ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant photo-ionization of Yb+ to Yb2+

107   0   0.0 ( 0 )
 نشر من قبل Markus Sondermann
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the controlled creation of a $mathrm{^{174}Yb^{2+}}$ ion by photo-ionizing $mathrm{^{174}Yb^+}$ with weak continuous-wave lasers at ultraviolet wavelengths. The photo-ionization is performed by resonantly exciting transitions of the $mathrm{^{174}Yb^+}$ ion in three steps. Starting from an ion crystal of two laser-cooled $mathrm{^{174}Yb^+}$ ions localized in a radio-frequency trap, the verification of the ionization process is performed by characterizing the properties of the resulting mixed-species ion-crystal. The obtained results facilitate fundamental studies of physics involving $mathrm{Yb^{2+}}$ ions.



قيم البحث

اقرأ أيضاً

The periodic changes in physical and chemical properties of the chemical elements is caused by the periodic change of the ionization energies. The ionization energy of each element is constant and this manifests itself in the periodic table. However, we show that the ionization energies can be dramatically changed, when atoms are placed in a photonic crystal consisting of materials with a highly tunable refractive index and voids. The tunability of these materials gives rise to the tunability of the ionization energies over a wide range. This allows one to come beyond the limitations put on by the periodic table on physical and chemical processes, and can open up new horizons in synthesizing exceptional chemical compounds that could be used in pharmaceutical and other medical-related activities.
Contemporary experiments in cavity quantum electrodynamics (cavity QED) with gas-phase neutral atoms rely increasingly on laser cooling and optical, magneto-optical or magnetostatic trapping methods to provide atomic localization with sub-micron unce rtainty. Difficult to achieve in free space, this goal is further frustrated by atom-surface interactions if the desired atomic placement approaches within several hundred nanometers of a solid surface, as can be the case in setups incorporating monolithic dielectric optical resonators such as microspheres, microtoroids, microdisks or photonic crystal defect cavities. Typically in such scenarios, the smallest atom-surface separation at which the van der Waals interaction can be neglected is taken to be the optimal localization point for associated trapping schemes, but this sort of conservative strategy generally compromises the achievable cavity QED coupling strength. Here we suggest a new approach to the design of optical dipole traps for atom confinement near surfaces that exploits strong surface interactions, rather than avoiding them, and present the results of a numerical study based on $^{39}$K atoms and indium tin oxide (ITO). Our theoretical framework points to the possibility of utilizing nanopatterning methods to engineer novel modifications of atom-surface interactions.
We discuss and measure the phase shift imposed onto a radially polarized light beam when focusing it onto an $^{174}text{Yb}^{+}$ ion. In the derivation of the expected phase shifts we include the properties of the involved atomic levels. Furthermore , we emphasize the importance of the scattering cross section and its relation to the efficiency for coupling the focused light to an atom. The phase shifts found in the experiment are compatible with the expected ones when accounting for known deficiencies of the focusing optics and the motion of the trapped ion at the Doppler limit of laser cooling.
We address the concept of direct multiphoton multiple ionization in atoms exposed to intense, short wavelength radiation and explore the conditions under which such processes dominate over the sequential. Their contribution is shown to be quite robus t, even under intensity fluctuations and interaction volume integration, and reasonable agreement with experimental data is also found.
Several recent attoclock experiments have investigated the fundamental question of a quantum mechanically induced time delay in tunneling ionization via extremely precise photoelectron momentum spectroscopy. The interpretations of those attoclock exp erimental results were controversially discussed, because the entanglement of the laser and Coulomb field did not allow for theoretical treatments without undisputed approximations. The method of semiclassical propagation matched with the tunneled wavefunction, the quasistatic Wigner theory, the analytical R-matrix theory, the backpropagation method, and the under-the-barrier recollision theory are the leading conceptual approaches put forward to treat this problem, however, with seemingly conflicting conclusions on the existence of a tunneling time delay. To resolve the contradicting conclusions of the different approaches, we consider a very simple tunneling scenario which is not plagued with complications stemming from the Coulomb potential of the atomic core, avoids consequent controversial approximations and, therefore, allows us to unequivocally identify the origin of the tunneling time delay as well as to confirm it with the backpropagation method being most known for predicting vanishing tunneling time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا