ﻻ يوجد ملخص باللغة العربية
We present optical and near-infrared (NIR) photometry of 28 gamma-ray bursts (GRBs) detected by the textit{Swift} satellite and rapidly observed by the Reionization and Transients Infrared/Optical (RATIR) camera. We compare the optical flux at fiducial times of 5.5 and 11 hours after the high-energy trigger to that in the X-ray regime to quantify optical darkness. 46$pm$9 per cent (13/28) of all bursts in our sample and 55$pm$10 per cent (13/26) of long GRBs are optically dark, which is statistically consistently with previous studies. Fitting RATIR optical and NIR spectral energy distributions (SEDs) of 19 GRBs, most (6/7) optically dark GRBs either occur at high-redshift ($z>4.5$) or have a high dust content in their host galaxies ($A_{rm V} > 0.3$). Performing K-S tests, we compare the RATIR sample to those previously presented in the literature, finding our distributions of redshift, optical darkness, host dust extinction and X-ray derived column density to be consistent. The one reported discrepancy is with host galaxy dust content in the BAT6 sample, which appears inconsistent with our sample and other previous literature. Comparing X-ray derived host galaxy hydrogen column densities to host galaxy dust extinction, we find that GRBs tend to occur in host galaxies with a higher metal-to-dust ratio than our own Galaxy, more akin to the Large and Small Magellanic Clouds. Finally, to mitigate time evolution of optical darkness, we measure $beta_{rm OX,rest}$ at a fixed rest frame time, $t_{rm rest}=1.5$ hours and fixed rest frame energies in the X-ray and optical regimes. Choosing to evaluate optical flux at $lambda_{rm rest}=0.25~mu$m, we remove high-redshift as a source of optical darkness, demonstrating that optical darkness must result from either high-redshift, dust content in the host galaxy along the GRB sight line, or a combination of the two.
Recent detections of GeV photons in a few GRBs by Fermi-LAT have led to strong constraints on the bulk Lorentz factor in GRB outflows. To avoid a large gamma-gamma optical depth, minimum values of the Lorentz factor have been estimated to be as high
The Fermi observatory, with its Gamma-Ray Bursts monitor (GBM) and Large Area Telescope (LAT), is observing Gamma-ray Bursts with unprecedented spectral coverage and sensitivity, from ~10 keV to > 300 GeV. In the first 3 years of the mission it obser
Decades ago two classes of gamma-ray bursts were identified and delineated as having durations shorter and longer than about 2 s. Subsequently indications also supported the existence of a third class. Using maximum likelihood estimation we analyze t
We have gathered optical photometry data from the literature on a large sample of Swift-era gamma-ray burst (GRB) afterglows including GRBs up to September 2009, for a total of 76 GRBs, and present an additional three pre-Swift GRBs not included in a
The complete Swift Burst Alert Telescope and X-Ray Telescope light curves of 118 gamma-ray bursts (GRBs) with known redshifts were fitted using the physical model of GRB pulses by Willingale et al. to produce a total of 607 pulses. We compute the pul