ترغب بنشر مسار تعليمي؟ اضغط هنا

A detailed study of the optical attenuation of gamma-ray bursts in the Swift era

100   0   0.0 ( 0 )
 نشر من قبل Owen Littlejohns Dr
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present optical and near-infrared (NIR) photometry of 28 gamma-ray bursts (GRBs) detected by the textit{Swift} satellite and rapidly observed by the Reionization and Transients Infrared/Optical (RATIR) camera. We compare the optical flux at fiducial times of 5.5 and 11 hours after the high-energy trigger to that in the X-ray regime to quantify optical darkness. 46$pm$9 per cent (13/28) of all bursts in our sample and 55$pm$10 per cent (13/26) of long GRBs are optically dark, which is statistically consistently with previous studies. Fitting RATIR optical and NIR spectral energy distributions (SEDs) of 19 GRBs, most (6/7) optically dark GRBs either occur at high-redshift ($z>4.5$) or have a high dust content in their host galaxies ($A_{rm V} > 0.3$). Performing K-S tests, we compare the RATIR sample to those previously presented in the literature, finding our distributions of redshift, optical darkness, host dust extinction and X-ray derived column density to be consistent. The one reported discrepancy is with host galaxy dust content in the BAT6 sample, which appears inconsistent with our sample and other previous literature. Comparing X-ray derived host galaxy hydrogen column densities to host galaxy dust extinction, we find that GRBs tend to occur in host galaxies with a higher metal-to-dust ratio than our own Galaxy, more akin to the Large and Small Magellanic Clouds. Finally, to mitigate time evolution of optical darkness, we measure $beta_{rm OX,rest}$ at a fixed rest frame time, $t_{rm rest}=1.5$ hours and fixed rest frame energies in the X-ray and optical regimes. Choosing to evaluate optical flux at $lambda_{rm rest}=0.25~mu$m, we remove high-redshift as a source of optical darkness, demonstrating that optical darkness must result from either high-redshift, dust content in the host galaxy along the GRB sight line, or a combination of the two.



قيم البحث

اقرأ أيضاً

Recent detections of GeV photons in a few GRBs by Fermi-LAT have led to strong constraints on the bulk Lorentz factor in GRB outflows. To avoid a large gamma-gamma optical depth, minimum values of the Lorentz factor have been estimated to be as high as 800-1200 in some bursts. Here we present a detailed calculation of the gamma-gamma optical depth taking into account both the geometry and the dynamics of the jet. In the framework of the internal shock model, we compute lightcurves in different energy bands and the corresponding spectrum and we show how the limits on the Lorentz factor can be significantly lowered compared to previous estimates. Our detailed model of the propagation of high energy photons in GRB outflows is also appropriate to study many other consequences of gamma-gamma annihilation in GRBs: (i) the gamma-gamma cutoff transition in a time-integrated spectrum is expected to be closer to a power-law steepening of the spectrum than to a sharp exponential decay; (ii) the temporal evolution of the gamma-gamma opacity during a burst favors a delay between the MeV and GeV light curves; (iii) for complex GRBs, the gamma-gamma opacity suppresses the shortest time-scale features in high energy light curves (above 100 MeV). Finally we also consider GRB scenarii where MeV and GeV photons are not produced at the same location, showing that the gamma-gamma opacity could be further lowered, reducing even more the constraint on the minimum Lorentz factor.
125 - Giacomo Vianello 2013
The Fermi observatory, with its Gamma-Ray Bursts monitor (GBM) and Large Area Telescope (LAT), is observing Gamma-ray Bursts with unprecedented spectral coverage and sensitivity, from ~10 keV to > 300 GeV. In the first 3 years of the mission it obser ved emission above 100 MeV from 35 GRBs, an order of magnitude gain with respect to previous observations in this energy range. In this paper we review the main results obtained on such sample, highlighting also the relationships with the low-energy features (as measured by the GBM), and with measurements from observatories at other wavelengths. We also briefly discuss prospects for detection of GRBs by future Very-High Energy observatories such as HAWC and CTA, and by Gravitational Wave experiments.
86 - I. Horvath , B. G. Toth 2016
Decades ago two classes of gamma-ray bursts were identified and delineated as having durations shorter and longer than about 2 s. Subsequently indications also supported the existence of a third class. Using maximum likelihood estimation we analyze t he duration distribution of 888 Swift BAT bursts observed before October 2015. Fitting three log-normal functions to the duration distribution of the bursts provides a better fit than two log-normal distributions, with 99.9999% significance. Similarly to earlier results, we found that a fourth component is not needed. The relative frequencies of the distribution of the groups are 8% for short, 35% for intermediate and 57% for long bursts which correspond to our previous results. We analyse the redshift distribution for the 269 GRBs of the 888 GRBs with known redshift. We find no evidence for the previously suggested difference between the long and intermediate GRBs redshift distribution. The observed redshift distribution of the 20 short GRBs differs with high significance from the distributions of the other groups.
122 - D. A. Kann , S. Klose , B. Zhang 2010
We have gathered optical photometry data from the literature on a large sample of Swift-era gamma-ray burst (GRB) afterglows including GRBs up to September 2009, for a total of 76 GRBs, and present an additional three pre-Swift GRBs not included in a n earlier sample. Furthermore, we publish 840 additional new photometry data points on a total of 42 GRB afterglows, including large data sets for GRBs 050319, 050408, 050802, 050820A, 050922C, 060418, 080413A and 080810. We analyzed the light curves of all GRBs in the sample and derived spectral energy distributions for the sample with the best data quality, allowing us to estimate the host galaxy extinction. We transformed the afterglow light curves into an extinction-corrected z=1 system and compared their luminosities with a sample of pre-Swift afterglows. The results of a former study, which showed that GRB afterglows clustered and exhibited a bimodal distribution in luminosity space, is weakened by the larger sample. We found that the luminosity distribution of the two afterglow samples (Swift-era and pre-Swift) are very similar, and that a subsample for which we were not able to estimate the extinction, which is fainter than the main sample, can be explained by assuming a moderate amount of line-of-sight host extinction. We derived bolometric isotropic energies for all GRBs in our sample, and found only a tentative correlation between the prompt energy release and the optical afterglow luminosity at one day after the GRB in the z=1 system. A comparative study of the optical luminosities of GRB afterglows with echelle spectra (which show a high number of foreground absorbing systems) and those without reveals no indication that the former are statistically significantly more luminous. (abridged)
The complete Swift Burst Alert Telescope and X-Ray Telescope light curves of 118 gamma-ray bursts (GRBs) with known redshifts were fitted using the physical model of GRB pulses by Willingale et al. to produce a total of 607 pulses. We compute the pul se luminosity function utilizing three GRB formation rate models: a progenitor that traces the cosmic star formation rate density (CSFRD) with either a single population of GRBs, coupled to various evolutionary parameters, or a bimodal population of high- and low-luminosity GRBs, and a direct fit to the GRB formation rate excluding any a priori assumptions. We find that a single population of GRB pulses with an evolving luminosity function is preferred over all other univariate evolving GRB models, or bimodal luminosity functions in reproducing the observed GRB pulse L-z distribution and that the magnitude of the evolution in brightness is consistent with studies that utilize only the brightest GRB pulses. We determine that the appearance of a GRB formation rate density evolution component is an artifact of poor parametrization of the CSFRD at high redshifts rather than indicating evolution in the formation rate of early epoch GRBs. We conclude that the single brightest region of a GRB light curve holds no special property, by incorporating pulse data from the totality of GRB emission we boost the GRB population statistics by a factor of 5, rule out some models utilized to explain deficiencies in GRB formation rate modelling, and constrain more tightly some of the observed parameters of GRB behaviour.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا