ترغب بنشر مسار تعليمي؟ اضغط هنا

Monte Carlo Tools for charged Higgs boson production

131   0   0.0 ( 0 )
 نشر من قبل Karol Kovarik
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف K. Kovarik




اسأل ChatGPT حول البحث

In this short review we discuss two implementations of the charged Higgs boson production process in association with a top quark in Monte Carlo event generators at next-to-leading order in QCD. We introduce the MC@NLO and the POWHEG method of matching next-to-leading order matrix elements with parton showers and compare both methods analyzing the charged Higgs boson production process in association with a top quark. We shortly discuss the case of a light charged Higgs boson where the associated charged Higgs production interferes with the charged Higgs production via t tbar-production and subsequent decay of the top quark.



قيم البحث

اقرأ أيضاً

137 - Korinna Zapp 2011
A thorough understanding of jet quenching on the basis of multi-particle final states and jet observables requires new theoretical tools. This talk summarises the status and propects of the theoretical description of jet quenching in terms of Monte Carlo generators.
69 - S. Jadach , G. Nail , W. Placzek 2016
We present numerical tests and predictions of the KrkNLO method for matching of NLO QCD corrections to hard processes with LO parton shower Monte Carlo generators (NLO+PS). This method was described in detail in our previous publications, where it wa s also compared with other NLO+PS matching approaches (MC@NLO and POWHEG) as well as fixed-order NLO and NNLO calculations. Here we concentrate on presenting some numerical results (cross sections and distributions) for $Z/gamma^*$ (Drell-Yan) and Higgs-boson production processes at the LHC. The Drell--Yan process is used mainly to validate the KrkNLO implementation in the Herwig 7 program with respect to the previous implementation in Sherpa. We also show predictions for this process with the new, complete, MC-scheme parton distribution functions and compare them with our previously published results. Then, we present the first results of the KrkNLO method for Higgs production in gluon-gluon fusion at the LHC and compare them with MC@NLO and POWHEG predictions from Herwig 7 fixed-order results from HNNLO and a resummed calculation from HqT, as well as with experimental data from the ATLAS collaboration.
In this Snowmass 2013 white paper, we review the effective field theory approach for studies of non-standard electroweak interactions in electroweak vector boson pair and triple production and vector boson scattering. We present an overview of the im plementation of dimension six and eight operators in MadGraph5, VBFNLO, and WHIZARD, and provide relations between the coefficients of these higher dimensions operators used in these programs and in the anomalous couplings approach. We perform a tuned comparison of predictions for multi-boson processes including non-standard electroweak interactions with MadGraph5, VBFNLO, and WHIZARD. We discuss the role of higher-order corrections in these predictions using VBFNLO and a POWHEG BOX implementation of higher-order QCD corrections to WWjj production. The purpose of this white paper is to collect useful tools for the study of non-standard EW physics at the LHC, compare them, and study the main physics issues in the relevant processes.
We present an investigation of the dependence of searches for boosted Higgs bosons using jet substructure on the perturbative and non-perturbative parameters of the Herwig++ Monte Carlo event generator. Values are presented for a new tune of the para meters of the event generator, together with the an estimate of the uncertainties based on varying the parameters around the best-fit values.
We discuss the calculation of charged Higgs boson production in association with top quark in the MC@NLO framework for combining NLO matrix elements with a parton shower. The process is defined in a model independent manner for wide applicability, an d can be used if the charged Higgs boson mass is either greater or less than the mass of the top quark. For the latter mass region, care is needed in defining the charged Higgs production mode due to interference with top pair production. We give a suitable definition applicable in an NLO (plus parton shower) context, and present example results for the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا