Multipulse sequences based on Carr-Purcell decoupling are frequently used for narrow-band signal detection in single spin magnetometry. We have analyzed the behavior of multipulse sensing sequences under real-world conditions, including finite pulse durations and the presence of detunings. We find that these non-idealities introduce harmonics to the filter function, allowing additional frequencies to pass the filter. In particular, we find that the XY family of sequences can generate signals at the 2fac, 4fac and 8fac harmonics and their odd subharmonics, where fac is the ac signal frequency. Consideration of the harmonic response is especially important for diamond-based nuclear spin sensing where the NMR frequency is used to identify the nuclear spin species, as it leads to ambiguities when several isotopes are present.