ﻻ يوجد ملخص باللغة العربية
We present HIRES observations for 30 damped Lyman alpha systems, selected on the basis of their large metal column densities from previous, lower resolution data. The measured metal column densities for Fe, Zn, S, Si, Cr, Mn, and Ni are provided for these 30 systems. Combined with previously observed large metal column density damped Lyman alpha systems, we present a sample of 44 damped Lyman alpha systems observed with high resolution spectrographs (R~30000). These damped Lyman alpha systems probe the most chemically evolved systems at redshifts greater than 1.5. We discuss the context of our sample with the general damped Lyman alpha population, demonstrating that we are probing the top 10% of metal column densities with our sample. In a companion paper, we will present an analysis of the samples elemental abundances in the context of galactic chemical enrichment.
Using our sample of the most metal-rich damped Lyman $alpha$ systems (DLAs) at z$sim2$, and two literature compilations of chemical abundances in 341 DLAs and 2818 stars, we present an analysis of the chemical composition of DLAs in the context of th
Damped Lyman-alpha absorbers (DLAs), seen in absorption against a background quasar, provide the most detailed probes available of element abundances in the Universe over > 90 % of its age. DLAs can be used to observationally measure the global mean
Utilizing the high-resolution, large-scale LAOZI cosmological simulations we investigate the nature of the metal-poor (${rm [Z/H]<-2}$) damped Lyman alpha systems (mpDLA) at $z=3$. The following physical picture of mpDLAs emerges. The majority of mpD
Damped Lyman-alpha systems (DLAs) and sub-DLAs seen toward background quasars provide the most detailed probes of elemental abundances. Somewhat paradoxically these measurements are more difficult at lower redshifts due to the atmospheric cut-off, an
We report the discovery and analysis of the most metal-poor damped Lyman-alpha (DLA) system currently known, based on observations made with the Keck HIRES spectrograph. The metal paucity of this system has only permitted the determination of three e