ﻻ يوجد ملخص باللغة العربية
From the symmetry between definitions of left and right divisors in associative $D$-algebra $A$, the possibility to define quotient as $Aotimes A$-number follows. In the paper, I considered division and division with remainder. I considered also definition of prime $A$-number.
In this paper, I treat quadratic equation over associative $D$-algebra. In quaternion algebra $H$, the equation $x^2=a$ has either $2$ roots, or infinitely many roots. Since $ain R$, $a<0$, then the equation has infinitely many roots. Otherwise, the
Module is effective representation of ring in Abelian group. Linear map of module over commutative ring is morphism of corresponding representation. This definition is the main subject of the book. To consider this definition from more general poin
In the book, I considered differential equations of order $1$ over Banach $D$Hyph algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. I considered examples of differential eq
The theory of abstract kernels in non-trivial extensions for many kinds of algebraical objects, such as groups, rings and graded rings, associative algebras, Lie algebras, restricted Lie algebras, DG-algebras and DG-Lie algebras, has been widely stud
Let $A$ be Banach algebra over commutative ring $D$. The map $f:Arightarrow A $ is called differentiable in the Gateaux sense, if $$f(x+a)-f(x)=partial f(x)circ a+o(a)$$ where the Gateaux derivative $partial f(x)$ of map $f$ is linear map of incremen