ﻻ يوجد ملخص باللغة العربية
Parameters of magnetic activity on the solar type stars depend on the properties of the dynamo processes operating in stellar convection zones. We apply nonlinear mean-field axisymmetric $alpha^2Omega$ dynamo models to calculate of the magnetic cycle parameters, such as the dynamo cycle period, the total magnetic flux and the Poynting magnetic energy flux on the surface of solar analogs with the rotation periods from 15 to 30 days. The models take into account the principal nonlinear mechanisms of the large-scale dynamo, such as the magnetic helicity conservation, magnetic buoyancy, and effects of magnetic forces on the angular momentum balance inside the convection zones. Also, we consider two types of the dynamo models. The distributed (D-type) models employ the standard alpha-effect distributed on the whole convection zone. The boundary (B-type) models employ the non-local alpha- effect, which is confined to the boundaries of the convection zone. Both the D- and B-type models show that the dynamo-generated magnetic flux increases with the increase of the stellar rotation rate. {It is found that for the considered range of the rotational periods} the magnetic helicity conservation is the most significant effect for the nonlinear quenching of the dynamo. This quenching is more efficient in the B-type than in the D-type dynamo models. The D-type dynamo reproduces the observed dependence of the cycle period on the rotation rate for the Sun analogs. For the solar analog rotating with a period of 15 days we find nonlinear dynamo regimes with multiply cycles.
Two fundamental properties of stellar magnetic fields have been determined by observations for solar-like stars with different Rossby numbers (Ro), namely, the magnetic field strength and the magnetic cycle period. The field strength exhibits two reg
Solar-cycle related variation of differential rotation is investigated through analyzing the rotation rates of magnetic fields, distributed along latitudes and varying with time at the time interval of August 1976 to April 2008. More pronounced diffe
Coronal mass ejections (CMEs) are one of the most energetic explosions in the solar atmosphere, and their occurrence rates exhibit obvious solar cycle dependence with more events taking place around solar maximum. Composition of interplanetary CMEs (
The latitudinal distributions of the yearly mean rotation rates measured respectively by Suzuki in 1998 and 2012 and Pulkkinen $&$ Tuominen in 1998 are utilized to investigate internal-cycle variation of solar differential rotation. The rotation rate
Solar UV variability is extremely relevant for the stratospheric ozone. It has an impact on Earths atmospheric structure and dynamics through radiative heating and ozone photochemistry. Our goal is to study the slope of the solar UV spectrum in two U