ﻻ يوجد ملخص باللغة العربية
We propose and analyze a numerical method to solve an elliptic transmission problem in full space. The method consists of a variational formulation involving standard boundary integral operators on the coupling interface and an ultra-weak formulation in the interior. To guarantee the discrete inf-sup condition, the system is discretized by the DPG method with optimal test functions. We prove that principal unknowns are approximated quasi-optimally. Numerical experiments for problems with smooth and singular solutions confirm optimal convergence orders.
We present an ultra-weak formulation of a hypersingular integral equation on closed polygons and prove its well-posedness and equivalence with the standard variational formulation. Based on this ultra-weak formulation we present a discontinuous Petro
We develop and analyze a discontinuous Petrov--Galerkin method with optimal test functions (DPG method) for a shallow shell model of Koiter type. It is based on a uniformly stable ultraweak formulation and thus converges robustly quasi-uniformly. Num
We introduce a cousin of the DPG method - the DPG* method - discuss their relationship and compare the two methods through numerical experiments.
This article introduces the DPG-star (from now on, denoted DPG$^*$) finite element method. It is a method that is in some sense dual to the discontinuous Petrov-Galerkin (DPG) method. The DPG methodology can be viewed as a means to solve an overdeter
We propose and analyze a discretization scheme that combines the discontinuous Petrov-Galerkin and finite element methods. The underlying model problem is of general diffusion-advection-reaction type on bounded domains, with decomposition into two su