ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluctuations of the heat exchanged between two quantum spin chains

175   0   0.0 ( 0 )
 نشر من قبل Gabriel Landi Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The statistics of the heat exchanged between two quantum XX spin chains prepared at different temperatures is studied within the assumption of weak coupling. This provides simple formulas for the average heat and its corresponding characteristic function, from which the probability distribu- tion may be computed numerically. These formulas are valid for arbitrary sizes and therefore allow us to analyze the role of the thermodynamic limit in this non-equilibrium setting. It is found that all thermodynamic quantities are extremely sensitive to the quantum phase transition of the XX chain.



قيم البحث

اقرأ أيضاً

77 - Yu-Han Ma , Hui Dong , H. T. Quan 2020
State functions play important roles in thermodynamics. Different from the process function, such as the exchanged heat $delta Q$ and the applied work $delta W$, the change of the state function can be expressed as an exact differential. We prove her e that, for a generic thermodynamic system, only the inverse of the temperature, namely $1/T$, can serve as the integration factor for the exchanged heat $delta Q$. The uniqueness of the integration factor invalidates any attempt to define other state functions associated with the exchanged heat, and in turn, reveals the incorrectness of defining the entransy $E_{vh}=C_VT^2 /2$ as a state function by treating $T$ as an integration factor. We further show the errors in the derivation of entransy by treating the heat capacity $C_V$ as a temperature-independent constant.
We present a unitary transformation relating two apparently different supersymmetric lattice models in one dimension. The first cite{FS07} describes semionic particles on a 1D ladder, with supersymmetry moving particles between the two legs. The seco nd cite{GFNR15} is a fermionic model with particle-hole symmetry and with supersymmetry creating or annihilating pairs of domain walls. The mapping we display features non-trivial phase factors that generalise the sign factors occurring in the Jordan-Wigner transformation. We dedicate this work to our friend and colleague Bernard Nienhuis, on the occasion of his 65-th birthday.
We study the entanglement entropy of blocks of contiguous spins in non-periodic (quasi-periodic or more generally aperiodic) critical Heisenberg, XX and quantum Ising spin chains, e.g. in Fibonacci chains. For marginal and relevant aperiodic modulati ons, the entanglement entropy is found to be a logarithmic function of the block size with log-periodic oscillations. The effective central charge, c_eff, defined through the constant in front of the logarithm may depend on the ratio of couplings and can even exceed the corresponding value in the homogeneous system. In the strong modulation limit, the ground state is constructed by a renormalization group method and the limiting value of c_eff is exactly calculated. Keeping the ratio of the block size and the system size constant, the entanglement entropy exhibits a scaling property, however, the corresponding scaling function may be nonanalytic.
Information scrambling, characterized by the out-of-time-ordered correlator (OTOC), has attracted much attention, as it sheds new light on chaotic dynamics in quantum many-body systems. The scale invariance, which appears near the quantum critical re gion in condensed matter physics, is considered to be important for the fast decay of the OTOC. In this paper, we focus on the one-dimensional spin-1/2 XXZ model, which exhibits quantum criticality in a certain parameter region, and investigate the relationship between scrambling and the scale invariance. We quantify scrambling by the averaged OTOC over the Pauli operator basis, which is related to the operator space entanglement entropy (OSEE). Using the infinite time-evolving block decimation (iTEBD) method, we numerically calculate time dependence of the OSEE in the early time region in the thermodynamic limit. We show that the averaged OTOC decays faster in the gapless region than in the gapped region. In the gapless region, the averaged OTOC behaves in the same manner regardless of the anisotropy parameter. This result is consistent with the fact that the low energy excitations of the gapless region belong to the same universality class as the Tomonaga-Luttinger liquid with the central charge c = 1. Furthermore, we estimate c by fitting the numerical data of the OSEE with an analytical result of the two-dimensional conformal field theory, and confirmed that c is close to unity. Thus, our numerical results suggest that the scale invariance is crucial for the universal behavior of the OTOC.
The false vacuum decay has been a central theme in physics for half a century with applications to cosmology and to the theory of fundamental interactions. This fascinating phenomenon is even more intriguing when combined with the confinement of elem entary particles. Due to the astronomical time scales involved, the research has so far focused on theoretical aspects of this decay. The purpose of this Letter is to show that the false vacuum decay is accessible to current optical experiments as quantum analog simulators of spin chains with confinement of the elementary excitations, which mimic the high energy phenomenology but in one spatial dimension. We study the non-equilibrium dynamics of the false vacuum in a quantum Ising chain and in an XXZ ladder. The false vacuum is the metastable state that arises in the ferromagnetic phase of the model when the symmetry is explicitly broken by a longitudinal field. This state decays through the formation of bubbles of true vacuum. Using iTEBD simulations, we are able to study the real-time evolution in the thermodynamic limit and measure the decay rate of local observables. We find that the numerical results agree with the theoretical prediction that the decay rate is exponentially small in the inverse of the longitudinal field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا