ﻻ يوجد ملخص باللغة العربية
The impurity effect of hyperon on atomic nuclei has received a renewed interest in nuclear physics since the first experimental observation of appreciable reduction of $E2$ transition strength in low-lying states of hypernucleus $^{7}_Lambda$Li. Many more data on low-lying states of $Lambda$ hypernuclei will be measured soon for $sd$-shell nuclei, providing good opportunities to study the $Lambda$ impurity effect on nuclear low-energy excitations. We carry out a quantitative analysis of $Lambda$ hyperon impurity effect on the low-lying states of $sd$-shell nuclei at the beyond-mean-field level based on a relativistic point-coupling energy density functional (EDF), considering that the $Lambda$ hyperon is injected into the lowest positive-parity ($Lambda_s$) and negative-parity ($Lambda_p$) states. We adopt a triaxially deformed relativistic mean-field (RMF) approach for hypernuclei and calculate the $Lambda$ binding energies of hypernuclei as well as the potential energy surfaces (PESs) in $(beta, gamma)$ deformation plane. We also calculate the PESs for the $Lambda$ hypernuclei with good quantum numbers using a microscopic particle rotor model (PRM) with the same relativistic EDF. The triaxially deformed RMF approach is further applied in order to determine the parameters of a five-dimensional collective Hamiltonian (5DCH) for the collective excitations of triaxially deformed core nuclei. Taking $^{25,27}_{Lambda}$Mg and $^{31}_{Lambda}$Si as examples, we analyse the impurity effects of $Lambda_s$ and $Lambda_p$ on the low-lying states of the core nuclei...
We extend the relativistic point coupling model to single-$Lambda$ hypernuclei. For this purpose, we add $N$-$Lambda$ effective contact couplings to the model Lagrangian, and determine the parameters by fitting to the experimental data for $Lambda$ b
We discuss low-lying collective excitations of $Lambda$ hypernuclei using the self-consistent mean-field approaches. We first discuss the deformation properties of $Lambda$ hypernuclei in the $sd$-shell region. Based on the relativistic mean-field (R
Spin-isospin transitions in nuclei away from the valley of stability are essential for the description of astrophysically relevant weak interaction processes. While they remain mainly beyond the reach of experiment, theoretical modeling provides impo
Novel transverse-momentum technique is used to analyse charged-particle exclusive data for collective motion in the Ar+KCl reaction at 1.8 GeV/nucl. Previous analysis of this reaction, employing the standard sphericity tensor, revealed no significant
We perform three-body model calculations for a $sd$-shell hypernucleus $^{19}_{Lambda}$F ($^{17}_{Lambda}{rm O}+p+n$) and its core nucleus $^{18}$F ($^{16}{rm O}+p+n$), employing a density-dependent contact interaction between the valence proton and