ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-Correlation of Near and Far-Infrared Background Anisotropies as Traced by Spitzer and Herschel

105   0   0.0 ( 0 )
 نشر من قبل Cameron Thacker
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the cross-correlation between the far-infrared background fluctuations as measured with the Herschel Space Observatory at 250, 350, and 500 {mu}m and the near-infrared background fluctuations with Spitzer Space Telescope at 3.6 {mu}m. The cross-correlation between far and near-IR background anisotropies are detected such that the correlation coefficient at a few to ten arcminute angular scales decreases from 0.3 to 0.1 when the far-IR wavelength increases from 250 {mu}m to 500 {mu}m. We model the cross-correlation using a halo model with three components: (a) far-IR bright or dusty star-forming galaxies below the masking depth in Herschel maps, (b) near-IR faint galaxies below the masking depth at 3.6 {mu}m, and (c) intra-halo light, or diffuse stars in dark matter halos, that likely dominates fluctuations at 3.6 {mu}m. The model is able to reasonably reproduce the auto correlations at each of the far-IR wavelengths and at 3.6 {mu}m and their corresponding cross-correlations. While the far and near-IR auto-correlations are dominated by faint dusty, star-forming galaxies and intra-halo light, respectively, we find that roughly half of the cross-correlation between near and far-IR backgrounds is due to the same galaxies that remain unmasked at 3.6 {mu}m. The remaining signal in the cross-correlation is due to intra-halo light present in the same dark matter halos as those hosting the same faint and unmasked galaxies. In this model, the decrease in the cross-correlation signal from 250 {mu}m to 500 {mu}m comes from the fact that the galaxies that are primarily contributing to 500 {mu}m fluctuations peak at a higher redshift than those at 250 {mu}m.



قيم البحث

اقرأ أيضاً

75 - Ye Cao , Yan Gong , Chang Feng 2019
The cosmic infrared background (CIB) anisotropies and cosmic microwave background (CMB) lensing are powerful measurements for exploring the cosmological and astrophysical problems. In this work, we measure the auto-correlation power spectrum of the C IB anisotropies in the Herschel-SPIRE HerMES Large Mode Survey (HeLMS) field, and the cross power spectrum with the CMB lensing measurements from the Planck satellite. The HeLMS field covers more than 270 deg^2, which is much larger than the previous analysis. We use the Herschel Level 1 time stream data to merge the CIB maps at 250, 350, and 500 um bands, and mask the areas where the flux is greater than 3-sigma (~50 mJy/beam) or no measured data. We obtain the final CIB power spectra at 100<ell<20000 by considering several effects, such as beam function, mode coupling, transfer function, and so on. We also calculate the theoretical CIB auto- and cross-power spectra of CIB and CMB lensing by assuming that the CIB emissivity follows Gaussian distribution in redshift. We find that, for the CIB auto power spectra, we obtain the signal to noise ratio (SNR) of 15.9, 15.7, and 15.3 at 250, 350, and 500 um, and for the CIBxCMB lensing power spectra, SNR of 7.5, 7.0, and 6.2 at 250, 350, and 500 um, respectively. Comparing to previous works, the constraints on the relevant CIB parameters are improved by factors of 2~5 in this study.
110 - R. J. Ivison 2010
We set out to determine the ratio, q(IR), of rest-frame 8-1000um flux, S(IR), to monochromatic radio flux, S(1.4GHz), for galaxies selected at far-IR and radio wavelengths, to search for signs that the ratio evolves with redshift, luminosity or dust temperature, and to identify any far-IR-bright outliers - useful laboratories for exploring why the far-IR/radio correlation is generally so tight when the prevailing theory suggests variations are almost inevitable. We use flux-limited 250-um and 1.4-GHz samples, obtained in GOODS-N using Herschel (HerMES; PEP) and the VLA. We determine bolometric IR output using ten bands spanning 24-1250um, exploiting data from PACS and SPIRE, as well as Spitzer, SCUBA, AzTEC and MAMBO. We also explore the properties of an L(IR)-matched sample, designed to reveal evolution of q(IR) with z, spanning log L(IR) = 11-12 L(sun) and z=0-2, by stacking into the radio and far-IR images. For 1.4-GHz-selected galaxies, we see tentative evidence of a break in the flux ratio, q(IR), at L(1.4GHz) ~ 10^22.7 W/Hz, where AGN are starting to dominate the radio power density, and of weaker correlations with z and T(d). From our 250-um-selected sample we identify a small number of far-IR-bright outliers, and see trends of q(IR) with L(1.4GHz), L(IR), T(d) and z, noting that some of these are inter-related. For our L(IR)-matched sample, there is no evidence that q(IR) changes significantly as we move back into the epoch of galaxy formation: we find q(IR) goes as (1+z)^gamma, where gamma = -0.04 +/- 0.03 at z=0-2; however, discounting the least reliable data at z<0.5 we find gamma = -0.26 +/- 0.07, modest evolution which may be related to the radio background seen by ARCADE2, perhaps driven by <10uJy radio activity amongst ordinary star-forming galaxies at z>1.
We use analytic computations to predict the power spectrum as well as the bispectrum of Cosmic Infrared Background (CIB) anisotropies. Our approach is based on the halo model and takes into account the mean luminosity-mass relation. The model is used to forecast the possibility to simultaneously constrain cosmological, CIB and halo occupation distribution (HOD) parameters in the presence of foregrounds. For the analysis we use wavelengths in eight frequency channels between 200 and 900$;mathrm{GHz}$ with survey specifications given by Planck and LiteBird. We explore the sensitivity to the model parameters up to multipoles of $ell =1000$ using auto- and cross-correlations between the different frequency bands. With this setting, cosmological, HOD and CIB parameters can be constrained to a few percent. Galactic dust is modeled by a power law and the shot noise contribution as a frequency dependent amplitude which are marginalized over. We find that dust residuals in the CIB maps only marginally influence constraints on standard cosmological parameters. Furthermore, the bispectrum yields tighter constraints (by a factor four in $1sigma$ errors) on almost all model parameters while the degeneracy directions are very similar to the ones of the power spectrum. The increase in sensitivity is most pronounced for the sum of the neutrino masses. Due to the similarity of degeneracies a combination of both analysis is not needed for most parameters. This, however, might be due to the simplified bias description generally adopted in such halo model approaches.
Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-calle d generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular power spectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectral index over the sky with reduced dispersion, especially at high Galactic latitudes above $b = pm 20{deg}$. We find that the dust temperature is $T = (19.4 pm 1.3)$ K and the dust spectral index is $beta = 1.6 pm 0.1$ averaged over the whole sky, while $T = (19.4 pm 1.5)$ K and $beta = 1.6 pm 0.2$ on 21 % of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60 % of the sky at Galactic latitudes $|b| > 20{deg}$. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products.
We present a linear clustering model of cosmic infrared background (CIB) anisotropies at large scales that is used to measure the cosmic star formation rate density up to redshift 6, the effective bias of the CIB and the mass of dark-matter halos hos ting dusty star-forming galaxies. This is achieved using the Planck CIB auto- and cross-power spectra (between different frequencies) and CIBxCMB lensing cross-spectra measurements, as well as external constraints (e.g. on the CIB mean brightness). We recovered an obscured star formation history which agrees well with the values derived from infrared deep surveys and we confirm that the obscured star formation dominates the unobscured one up to at least z=4. The obscured and unobscured star formation rate densities are compatible at $1sigma$ at z=5. We also determined the evolution of the effective bias of the galaxies emitting the CIB and found a rapid increase from $sim$0.8 at z$=$0 to $sim$8 at z$=$4. At 2$<$z$<$4, this effective bias is similar to that of galaxies at the knee of the mass functions and submillimeter galaxies. This effective bias is the weighted average of the true bias with the corresponding emissivity of the galaxies. The halo mass corresponding to this bias is thus not exactly the mass contributing the most to the star formation density. Correcting for this, we obtained a value of log(M$_h$/M$_{odot}$)=12.77$_{-0.125}^{+0.128}$ for the mass of the typical dark matter halo contributing to the CIB at z=2. Finally, we also computed using a Fisher matrix analysis how the uncertainties on the cosmological parameters affect the recovered CIB model parameters and find that the effect is negligible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا