ﻻ يوجد ملخص باللغة العربية
Improving upon the standard evolutionary population synthesis (EPS) technique, we present spectrophotometric models of galaxies whose morphology goes from spherical structures to discs, properly accounting for the effect of dust in the interstellar medium (ISM). These models enclose three main physical components: the diffuse ISM composed by gas and dust, the complexes of molecular clouds (MCs) where active star formation occurs and the stars of any age and chemical composition. These models are based on robust evolutionary chemical models that provide the total amount of gas and stars present at any age and that are adjusted in order to match the gross properties of galaxies of different morphological type. We have employed the results for the properties of the ISM presented in Piovan, Tantalo & Chiosi (2006a) and the single stellar populations calculated by Cassar`a et al. (2013) to derive the spectral energy distributions (SEDs) of galaxies going from pure bulge to discs passing through a number of composite systems with different combinations of the two components. The first part of the paper is devoted to recall the technical details of the method and the basic relations driving the interaction between the physical components of the galaxy. Then, the main parameters are examined and their effects on the spectral energy distribution of three prototype galaxies are highlighted. We conclude analyzing the capability of our galaxy models in reproducing the SEDs of real galaxies in the Local Universe and as a function of redshift.
In this paper, we present spectrophotometric models for galaxies of different morphological type whose spectral energy distributions (SEDs) take into account the effect of dust in absorbing UV-optical light and re-emitting it in the infrared (IR). Th
We present the science case for mapping several thousand galaxy (proto)clusters at z=1-10 with a large aperture single dish sub-mm facility, producing a high-redshift counterpart to local large surveys of rich clusters like the well-studied Abell cat
We use published reconstructions of the star formation history (SFH) of the Large Magellanic Cloud (LMC), Small Magellanic Cloud, and NGC 300 from the analysis of resolved stellar populations to investigate where such galaxies might land on well-know
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high re
We explore the co-evolution of galaxies in nearby groups (V < 3000 km/s) with a multi-wavelength approach. We analyze GALEX far-UV (FUV) and near-UV (NUV) imaging and SDSS u,g,r,i,z data of groups spanning a large range of dynamical phases. We charac