ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling of entanglement in $2+1$-dimensional scale-invariant field theories

93   0   0.0 ( 0 )
 نشر من قبل Eduardo Fradkin
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the universal scaling behavior of the entanglement entropy of critical theories in $2+1$ dimensions. We specially consider two fermionic scale-invariant models, free massless Dirac fermions and a model of fermions with quadratic band touching, and numerically study the two-cylinder entanglement entropy of the models on the torus. We find that in both cases the entanglement entropy satisfies the area law and has the subleading term which is a scaling function of the aspect ratios of the cylindrical regions. We test the scaling of entanglement in both the free fermion models using three possible scaling functions for the subleading term derived from a) the quasi-one-dimensional conformal field theory, b) the bosonic quantum Lifshitz model, and c) the holographic AdS/CFT correspondence. For the later case we construct an analytic scaling function using holography, appropriate for critical theories with a gravitational dual description. We find that the subleading term in the fermionic models is well described, for a range of aspect ratios, by the scaling form derived from the quantum Lifshitz model as well as that derived using the AdS/CFT correspondence (in this case only for the Dirac model). For the case where the fermionic models are placed on a square torus we find the fit to the different scaling forms is in agreement to surprisingly high precision.



قيم البحث

اقرأ أيضاً

The classification of topological phases of matter in the presence of interactions is an area of intense interest. One possible means of classification is via studying the partition function under modular transforms, as the presence of an anomalous p hase arising in the edge theory of a D-dimensional system under modular transformation, or modular anomaly, signals the presence of a (D+1)-D non-trivial bulk. In this work, we discuss the modular transformations of conformal field theories along a (2+1)-D and a (3+1)-D edge. Using both analytical and numerical methods, we show that chiral complex free fermions in (2+1)-D and (3+1)-D are modular invariant. However, we show in (3+1)-D that when the edge theory is coupled to a background U(1) gauge field this results in the presence of a modular anomaly that is the manifestation of a quantum Hall effect in a (4+1)-D bulk. Using the modular anomaly, we find that the edge theory of (4+1)-D insulator with spacetime inversion symmetry(P*T) and fermion number parity symmetry for each spin becomes modular invariant when 8 copies of the edges exist.
We review the imaginary time path integral approach to the quench dynamics of conformal field theories. We show how this technique can be applied to the determination of the time dependence of correlation functions and entanglement entropy for both g lobal and local quenches. We also briefly review other quench protocols. We carefully discuss the limits of applicability of these results to realistic models of condensed matter and cold atoms.
We study disorder operator, defined as a symmetry transformation applied to a finite region, across a continuous quantum phase transition in $(2+1)d$. We show analytically that at a conformally-invariant critical point with U(1) symmetry, the disorde r operator with a small U(1) rotation angle defined on a rectangle region exhibits power-law scaling with the perimeter of the rectangle. The exponent is proportional to the current central charge of the critical theory. Such a universal scaling behavior is due to the sharp corners of the region and we further obtain a general formula for the exponent when the corner is nearly smooth. To probe the full parameter regime, we carry out systematic computation of the U(1) disorder parameter in the square lattice Bose-Hubbard model across the superfluid-insulator transition with large-scale quantum Monte Carlo simulations, and confirm the presence of the universal corner correction. The exponent of the corner term determined from numerical simulations agrees well with the analytical predictions.
We study quantized non-local order parameters, constructed by using partial time-reversal and partial reflection, for fermionic topological phases of matter in one spatial dimension protected by an orientation reversing symmetry, using topological qu antum field theories (TQFTs). By formulating the order parameters in the Hilbert space of state sum TQFT, we establish the connection between the quantized non-local order parameters and the underlying field theory, clarifying the nature of the order parameters as topological invariants. We also formulate several entanglement measures including the entanglement negativity on state sum spin TQFT, and describe the exact correspondence of the entanglement measures to path integrals on a closed surface equipped with a specific spin structure.
220 - H. Chamati , N. S. Tonchev 2011
The quantum critical behavior of the 2+1 dimensional Gross--Neveu model in the vicinity of its zero temperature critical point is considered. The model is known to be renormalisable in the large $N$ limit, which offers the possibility to obtain expre ssions for various thermodynamic functions in closed form. We have used the concept of finite--size scaling to extract information about the leading temperature behavior of the free energy and the mass term, defined by the fermionic condensate and determined the crossover lines in the coupling ($g$) -- temperature ($T$) plane. These are given by $Tsim|g-g_c|$, where $g_c$ denotes the critical coupling at zero temperature. According to our analysis no spontaneous symmetry breaking survives at finite temperature. We have found that the leading temperature behavior of the fermionic condensate is proportional to the temperature with the critical amplitude $frac{sqrt{5}}3pi$. The scaling function of the singular part of the free energy is found to exhibit a maximum at $frac{ln2}{2pi}$ corresponding to one of the crossover lines. The critical amplitude of the singular part of the free energy is given by the universal number $frac13[frac1{2pi}zeta(3)-mathrm{Cl}_2(frac{pi}3)]=-0.274543...$, where $zeta(z)$ and $mathrm{Cl}_2(z)$ are the Riemann zeta and Clausens functions, respectively. Interpreted in terms the thermodynamic Casimir effect, this result implies an attractive Casimir force. This study is expected to be useful in shedding light on a broader class of four fermionic models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا