ﻻ يوجد ملخص باللغة العربية
We show that oppositely directed fluxes of energy and magnetic helicity coexist in the inertial range in fully developed magnetohydrodynamic (MHD) turbulence with small-scale sources of magnetic helicity. Using a helical shell model of MHD turbulence, we study the high Reynolds number magnetohydrodynamic turbulence for helicity injection at a scale that is much smaller than the scale of energy injection. In a short range of scales larger than the forcing scale of magnetic helicity, a bottleneck-like effect appears, which results in a local reduction of the spectral slope. The slope changes in a domain with a high level of relative magnetic helicity, which determines that part of the magnetic energy related to the helical modes at a given scale. If the relative helicity approaches unity, the spectral slope tends to $-3/2$. We show that this energy pileup is caused by an inverse cascade of magnetic energy associated with the magnetic helicity. This negative energy flux is the contribution of the pure magnetic-to-magnetic energy transfer, which vanishes in the non-helical limit. In the context of astrophysical dynamos, our results indicate that a large-scale dynamo can be affected by the magnetic helicity generated at small scales. The kinetic helicity, in particular, is not involved in the process at all. An interesting finding is that an inverse cascade of magnetic energy can be provided by a small-scale source of magnetic helicity fluctuations without a mean injection of magnetic helicity.
A Hamiltonian two-field gyrofluid model for kinetic Alfven waves (KAWs) in a magnetized electron-proton plasma, retaining ion finite-Larmor-radius corrections and parallel magnetic field fluctuations, is used to study the inverse cascades that develo
The current understanding of MHD turbulence envisions turbulent eddies which are anisotropic in all three directions. In the plane perpendicular to the local mean magnetic field, this implies that such eddies become current-sheet-like structures at s
Three-dimensional (3D) turbulence has both energy and helicity as inviscid constants of motion. In contrast to two-dimensional (2D) turbulence, where a second inviscid invariant--the enstrophy--blocks the energy cascade to small scales, in 3D there i
We study a turbulent helical dynamo in a periodic domain by solving the ideal magnetohydrodynamic (MHD) equations with the FLASH code using the divergence-cleaning eight-wave method and compare our results with direct numerical simulations (DNS) usin
The statistics of the energy and helicity fluxes in isotropic turbulence are studied using high resolution direct numerical simulation. The scaling exponents of the energy flux agree with those of the transverse velocity structure functions through r