ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Bayesian inference for stochastic volatility models with ensemble MCMC methods

135   0   0.0 ( 0 )
 نشر من قبل Radford M. Neal
 تاريخ النشر 2014
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce efficient ensemble Markov Chain Monte Carlo (MCMC) sampling methods for Bayesian computations in the univariate stochastic volatility model. We compare the performance of our ensemble MCMC methods with an improved version of a recent sampler of Kastner and Fruwirth-Schnatter (2014). We show that ensemble samplers are more efficient than this state of the art sampler by a factor of about 3.1, on a data set simulated from the stochastic volatility model. This performance gain is achieved without the ensemble MCMC sampler relying on the assumption that the latent process is linear and Gaussian, unlike the sampler of Kastner and Fruwirth-Schnatter.



قيم البحث

اقرأ أيضاً

We introduce an efficient MCMC sampling scheme to perform Bayesian inference in the M/G/1 queueing model given only observations of interdeparture times. Our MCMC scheme uses a combination of Gibbs sampling and simple Metropolis updates together with three novel shift and scale updates. We show that our novel updates improve the speed of sampling considerably, by factors of about 60 to about 180 on a variety of simulated data sets.
81 - Qifan Song , Yan Sun , Mao Ye 2020
Stochastic gradient Markov chain Monte Carlo (MCMC) algorithms have received much attention in Bayesian computing for big data problems, but they are only applicable to a small class of problems for which the parameter space has a fixed dimension and the log-posterior density is differentiable with respect to the parameters. This paper proposes an extended stochastic gradient MCMC lgoriathm which, by introducing appropriate latent variables, can be applied to more general large-scale Bayesian computing problems, such as those involving dimension jumping and missing data. Numerical studies show that the proposed algorithm is highly scalable and much more efficient than traditional MCMC algorithms. The proposed algorithms have much alleviated the pain of Bayesian methods in big data computing.
In this paper we perform Bayesian estimation of stochastic volatility models with heavy tail distributions using Metropolis adjusted Langevin (MALA) and Riemman manifold Langevin (MMALA) methods. We provide analytical expressions for the application of these methods, assess the performance of these methodologies in simulated data and illustrate their use on two financial time series data sets.
We study the class of state-space models and perform maximum likelihood estimation for the model parameters. We consider a stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood function with the novelty of usin g approximate Bayesian computation (ABC) within SAEM. The task is to provide each iteration of SAEM with a filtered state of the system, and this is achieved using an ABC sampler for the hidden state, based on sequential Monte Carlo (SMC) methodology. It is shown that the resulting SAEM-ABC algorithm can be calibrated to return accurate inference, and in some situations it can outperform a version of SAEM incorporating the bootstrap filter. Two simulation studies are presented, first a nonlinear Gaussian state-space model then a state-space model having dynamics expressed by a stochastic differential equation. Comparisons with iterated filtering for maximum likelihood inference, and Gibbs sampling and particle marginal methods for Bayesian inference are presented.
Stochastic gradient MCMC (SG-MCMC) algorithms have proven useful in scaling Bayesian inference to large datasets under an assumption of i.i.d data. We instead develop an SG-MCMC algorithm to learn the parameters of hidden Markov models (HMMs) for tim e-dependent data. There are two challenges to applying SG-MCMC in this setting: The latent discrete states, and needing to break dependencies when considering minibatches. We consider a marginal likelihood representation of the HMM and propose an algorithm that harnesses the inherent memory decay of the process. We demonstrate the effectiveness of our algorithm on synthetic experiments and an ion channel recording data, with runtimes significantly outperforming batch MCMC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا