ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal and Residual Excited-State Population in a 3D Transmon Qubit

268   0   0.0 ( 0 )
 نشر من قبل Xiaoyue Jin
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a systematic study of the first excited-state population in a 3D transmon qubit mounted in a dilution refrigerator with a variable temperature. Using a modified version of the protocol developed by Geerlings et al. [1], we observe the excited-state population to be consistent with a Maxwell-Boltzmann distribution, i.e., a qubit in thermal equilibrium with the refrigerator, over the temperature range 35-150 mK. Below 35 mK, the excited-state population saturates to 0.1%, near the resolution of our measurement. We verified this result using a flux qubit with ten-times stronger coupling to its readout resonator. We conclude that these qubits have effective temperature T_{eff} = 35 mK. Assuming T_{eff} is due solely to hot quasiparticles, the inferred qubit lifetime is 108 us and in plausible agreement with the measured 80 us.



قيم البحث

اقرأ أيضاً

Leakage errors occur when a quantum system leaves the two-level qubit subspace. Reducing these errors is critically important for quantum error correction to be viable. To quantify leakage errors, we use randomized benchmarking in conjunction with me asurement of the leakage population. We characterize single qubit gates in a superconducting qubit, and by refining our use of Derivative Reduction by Adiabatic Gate (DRAG) pulse shaping along with detuning of the pulses, we obtain gate errors consistently below $10^{-3}$ and leakage rates at the $10^{-5}$ level. With the control optimized, we find that a significant portion of the remaining leakage is due to incoherent heating of the qubit.
We present a hybrid semiconductor-based superconducting qubit device which remains coherent at magnetic fields up to 1 T. The qubit transition frequency exhibits periodic oscillations with magnetic field, consistent with interference effects due to t he magnetic flux threading the cross section of the proximitized semiconductor nanowire junction. As induced superconductivity revives, additional coherent modes emerge at high magnetic fields, which we attribute to the interaction of the qubit and low-energy Andreev states.
We present a detailed characterization of coherence in seven transmon qubits in a circuit QED architecture. We find that spontaneous emission rates are strongly influenced by far off-resonant modes of the cavity and can be understood within a semicla ssical circuit model. A careful analysis of the spontaneous qubit decay into a microwave transmission-line cavity can accurately predict the qubit lifetimes over two orders of magnitude in time and more than an octave in frequency. Coherence times $T_1$ and $T_2^*$ of more than a microsecond are reproducibly demonstrated.
120 - J. Goetz , F. Deppe , P. Eder 2016
Thermal microwave states are omnipresent noise sources in superconducting quantum circuits covering all relevant frequency regimes. We use them as a probe to identify three second-order decoherence mechanisms of a superconducting transmon. First, we quantify the efficiency of a resonator filter in the dispersive Jaynes-Cummings regime and find evidence for parasitic loss channels. Second, we probe second-order noise in the low-frequency regime and demonstrate the expected $T^{3}$ temperature dependence of the qubit dephasing rate. Finally, we show that qubit parameter fluctuations due to two-level states are enhanced under the influence of thermal microwave states. In particular, we experimentally confirm the $T^{2}$-dependence of the fluctuation spectrum expected for noninteracting two-level states.
Developing a packaging scheme that meets all of the requirements for operation of solid-state qubits in a cryogenic environment can be a formidable challenge. In this article, we discuss work being done in our group as well as in the broader communit y, focusing on the role of 3D integration and packaging in quantum processing with solid-state qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا