ﻻ يوجد ملخص باللغة العربية
We have developed a method for complementing an arbitrary classical dynamical system to a quantum system using the Lorenz and Rossler systems as examples. The Schrodinger equation for the corresponding quantum statistical ensemble is described in terms of the Hamilton-Jacobi formalism. We consider both the original dynamical system in the position space and the conjugate dynamical system corresponding to the momentum space. Such simultaneous consideration of mutually complementary position and momentum frameworks provides a deeper understanding of the nature of chaotic behavior in dynamical systems. We have shown that the new formalism provides a significant simplification of the Lyapunov exponents calculations. From the point of view of quantum optics, the Lorenz and Rossler systems correspond to three modes of a quantized electromagnetic field in a medium with cubic nonlinearity. From the computational point of view, the new formalism provides a basis for the analysis of complex dynamical systems using quantum computers.
A generalization of the Lorenz equations is proposed where the variables take values in a Lie algebra. The finite dimensionality of the representation encodes the quantum fluctuations, while the non-linear nature of the equations can describe chaotic
In this article we construct the parameter region where the existence of a homoclinic orbit to a zero equilibrium state of saddle type in the Lorenz-like system will be analytically proved in the case of a nonnegative saddle value. Then, for a qualit
The amplitude-dependent frequency of the oscillations, termed emph{nonisochronicity}, is one of the essential characteristics of nonlinear oscillators. In this paper, the dynamics of the Rossler oscillator in the presence of nonisochronicity is exami
This work presents the continuation of the recent article The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension, published in the Nonlinear Dynamics journal. In this work, in comparison with the results for classical re
For every $rinmathbb{N}_{geq 2}cup{infty}$, we show that the space of ergodic measures is path connected for $C^r$-generic Lorenz attractors while it is not connected for $C^r$-dense Lorenz attractors. Various properties of the ergodic measure space