ﻻ يوجد ملخص باللغة العربية
We present high-resolution observations of the 880 $mu$m (rest-frame FIR) continuum emission in the z$=$4.05 submillimeter galaxy GN20 from the IRAM Plateau de Bure Interferometer (PdBI). These data resolve the obscured star formation in this unlensed galaxy on scales of 0.3$^{primeprime}$$times$0.2$^{primeprime}$ ($sim$2.1$times$1.3 kpc). The observations reveal a bright (16$pm$1 mJy) dusty starburst centered on the cold molecular gas reservoir and showing a bar-like extension along the major axis. The striking anti-correlation with the HST/WFC3 imaging suggests that the copious dust surrounding the starburst heavily obscures the rest-frame UV/optical emission. A comparison with 1.2 mm PdBI continuum data reveals no evidence for variations in the dust properties across the source within the uncertainties, consistent with extended star formation, and the peak star formation rate surface density (119$pm$8 M$_{odot}$ yr$^{-1}$ kpc$^{-2}$) implies that the star formation in GN20 remains sub-Eddington on scales down to 3 kpc$^2$. We find that the star formation efficiency is highest in the central regions of GN20, leading to a resolved star formation law with a power law slope of $Sigma_{rm SFR}$ $sim$ $Sigma_{rm H_2}^{rm 2.1pm1.0}$, and that GN20 lies above the sequence of normal star-forming disks, implying that the dispersion in the star formation law is not due solely to morphology or choice of conversion factor. These data extend previous evidence for a fixed star formation efficiency per free-fall time to include the star-forming medium on $sim$kpc-scales in a galaxy 12 Gyr ago.
We present new observations, carried out with IRAM NOEMA, of the atomic neutral carbon transitions [CI](1-0) at 492 GHz and [CI](2-1) at 809 GHz of GN20, a well-studied star-bursting galaxy at $z=4.05$. The high luminosity line ratio [CI](2-1)/[CI](1
Using high-resolution (sub-kiloparsec scale) submillimeter data obtained by ALMA, we analyze the star formation rate (SFR), gas content and kinematics in SDP 81, a gravitationally-lensed star-forming galaxy at redshift 3. We estimate the SFR surface
We present here a three-dimesional hydrodynamical simulation for star formation. Our aim is to explore the effect of the metal-line cooling on the thermodynamics of the star-formation process. We explore the effect of changing the metallicty of the g
I present a model for the star formation properties of z~2 starburst galaxies. Here, I discuss models for the formation of high-z Submillimeter Galaxies, as well as the CO-H2 conversion factor for these systems. I then apply these models to literatur
We study the propagation of star formation based on the investigation of the separation of young star clusters from HII regions nearest to them. The relation between the separation and U-B colour index (or age) of a star cluster was found. The averag