ترغب بنشر مسار تعليمي؟ اضغط هنا

The kiloparsec-scale star formation law at redshift 4: wide-spread, highly efficient star formation in the dust-obscured starburst galaxy GN20

194   0   0.0 ( 0 )
 نشر من قبل Jacqueline Hodge
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high-resolution observations of the 880 $mu$m (rest-frame FIR) continuum emission in the z$=$4.05 submillimeter galaxy GN20 from the IRAM Plateau de Bure Interferometer (PdBI). These data resolve the obscured star formation in this unlensed galaxy on scales of 0.3$^{primeprime}$$times$0.2$^{primeprime}$ ($sim$2.1$times$1.3 kpc). The observations reveal a bright (16$pm$1 mJy) dusty starburst centered on the cold molecular gas reservoir and showing a bar-like extension along the major axis. The striking anti-correlation with the HST/WFC3 imaging suggests that the copious dust surrounding the starburst heavily obscures the rest-frame UV/optical emission. A comparison with 1.2 mm PdBI continuum data reveals no evidence for variations in the dust properties across the source within the uncertainties, consistent with extended star formation, and the peak star formation rate surface density (119$pm$8 M$_{odot}$ yr$^{-1}$ kpc$^{-2}$) implies that the star formation in GN20 remains sub-Eddington on scales down to 3 kpc$^2$. We find that the star formation efficiency is highest in the central regions of GN20, leading to a resolved star formation law with a power law slope of $Sigma_{rm SFR}$ $sim$ $Sigma_{rm H_2}^{rm 2.1pm1.0}$, and that GN20 lies above the sequence of normal star-forming disks, implying that the dispersion in the star formation law is not due solely to morphology or choice of conversion factor. These data extend previous evidence for a fixed star formation efficiency per free-fall time to include the star-forming medium on $sim$kpc-scales in a galaxy 12 Gyr ago.



قيم البحث

اقرأ أيضاً

We present new observations, carried out with IRAM NOEMA, of the atomic neutral carbon transitions [CI](1-0) at 492 GHz and [CI](2-1) at 809 GHz of GN20, a well-studied star-bursting galaxy at $z=4.05$. The high luminosity line ratio [CI](2-1)/[CI](1 -0) implies an excitation temperature of $48^{+14}_{-9}$ K, which is significantly higher than the apparent dust temperature of $T_{rm d}=33pm2$ K ($beta=1.9$) derived under the common assumption of an optically thin far-infrared dust emission, but fully consistent with $T_{rm d}=52pm5$ K of a general opacity model where the optical depth ($tau$) reaches unity at a wavelength of $lambda_0=170pm23$ $mu$m. Moreover, the general opacity solution returns a factor of $sim 2times$ lower dust mass and, hence, a lower molecular gas mass for a fixed gas-to-dust ratio, than with the optically thin dust model. The derived properties of GN20 thus provide an appealing solution to the puzzling discovery of starbursts appearing colder than main-sequence galaxies above $z>2.5$, in addition to a lower dust-to-stellar mass ratio that approaches the physical value predicted for starburst galaxies.
Using high-resolution (sub-kiloparsec scale) submillimeter data obtained by ALMA, we analyze the star formation rate (SFR), gas content and kinematics in SDP 81, a gravitationally-lensed star-forming galaxy at redshift 3. We estimate the SFR surface density ($Sigma_{mathrm{SFR}}$) in the brightest clump of this galaxy to be $357^{+135}_{-85},mathrm{M_{odot},yr^{-1},kpc^{-2}}$, over an area of $0.07pm0.02,mathrm{kpc}^2$. Using the intensity-weighted velocity of CO$,$(5-4), we measure the turbulent velocity dispersion in the plane-of-the-sky and find $sigma_{mathrm{v,turb}} = 37pm5,mathrm{km,s}^{-1}$ for the star-forming clump, in good agreement with previous estimates along the line of sight. Our measurements of gas surface density, freefall time and turbulent Mach number reveal that the role of turbulence is vital to explaining the observed SFR in this clump. While the Kennicutt Schmidt (KS) relation predicts a SFR surface density of $Sigma_{mathrm{SFR,KS}} = 52pm17,mathrm{M_{odot},yr^{-1},kpc^{-2}}$, the single-freefall model by Krumholz, Dekel and McKee (KDM) predicts $Sigma_{mathrm{SFR,KDM}} = 106pm37,mathrm{M_{odot},yr^{-1},kpc^{-2}}$. In contrast, the multi-freefall (turbulence) model by Salim, Federrath and Kewley (SFK) gives $Sigma_{mathrm{SFR,SFK}} = 491^{+139}_{-194},mathrm{M_{odot},yr^{-1},kpc^{-2}}$. Although the SFK relation overestimates the SFR in this clump (possibly due to the ignorance of magnetic field), it provides the best prediction among the available models. Finally, we compare the star formation and gas properties of this high-redshift galaxy to local star-forming regions and find that the SFK relation provides the best estimates of SFR in both local and high-redshift galaxies.
88 - P. Fibla , S. Bovino , R. Riaz 2018
We present here a three-dimesional hydrodynamical simulation for star formation. Our aim is to explore the effect of the metal-line cooling on the thermodynamics of the star-formation process. We explore the effect of changing the metallicty of the g as from $Z/Z_{odot}=10^{-4}$ to $Z/Z_{odot}=10^{-2}$. Furthermore, we explore the implications of using the observational abundance pattern of a CEMP-no star, which have been considered to be the missing second-generation stars, the so-called Pop. III.2 stars. In order to pursue our aim, we modelled the microphysics by employing the public astrochemistry package KROME, using a chemical network which includes sixteen chemical species (H, H$^{+}$, H$^{-}$, He, He$^{+}$, He$^{++}$, e$^{-}$, H$_{2}$, H$_{2}^{+}$, C, C$^{+}$, O, O$^{+}$, Si, Si$^{+}$, and Si$^{++}$). We couple KROME with the fully three-dimensional Smoothed-particle hydrodynamics (SPH) code GRADSPH. With this framework we investigate the collapse of a metal-enhanced cloud, exploring the fragmentation process and the formation of stars. We found that the metallicity has a clear impact on the thermodynamics of the collapse, allowing the cloud to reach the CMB temperature floor for a metallicity $Z/Z_{odot}=10^{-2}$, which is in agreement with previous work. Moreover, we found that adopting the abundance pattern given by the star SMSS J031300.36-670839.3 the thermodynamics behavior is very similar to simulations with a metallicity of $Z/Z_{odot}=10^{-2}$, due to the high carbon abundance. As long as only metal line cooling is considered, our results support the metallicity threshold proposed by previous works, which will very likely regulate the first episode of fragmentation and potentially determine the masses of the resulting star clusters.
137 - Desika Narayanan 2013
I present a model for the star formation properties of z~2 starburst galaxies. Here, I discuss models for the formation of high-z Submillimeter Galaxies, as well as the CO-H2 conversion factor for these systems. I then apply these models to literatur e observations. I show that when using a functional form for XCO that varies smoothly with the physical properties in galaxies, galaxies at both local and high-z lie on a unimodal Kennicutt-Schmidt star formation law, with power-law index of ~2. The inferred gas fractions of these galaxies are large (fgas ~ 0.2-0.4), though a factor ~2 lower than most literature estimates that utilize locally-calibrated CO-H2 conversion factors.
We study the propagation of star formation based on the investigation of the separation of young star clusters from HII regions nearest to them. The relation between the separation and U-B colour index (or age) of a star cluster was found. The averag e age of star clusters increases with the separation as the 1.0-1.2 power in the separation range from 40 to 200 pc and as the 0.4-0.9 power in the range of 100-500 pc in the galaxies with symmetric morphology. The galaxies with distorted asymmetric disc structure show more complex and steeper (power >1.2 at separations from 40 to 500 pc) dependence between the age and the separation. Our results confirm the findings of previous studies on the dominant role of turbulence in propagation of the star formation process on spatial scales up to 500 pc and on time scales up to 300 Myr. On a smaller scale (=<100 pc), other physical processes, such as stellar winds and supernova explosions, play an important role along with turbulence. On the scale of stellar associations (100-200 pc and smaller), the velocity of star formation propagation is almost constant and it has a typical value of a few km/s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا