ﻻ يوجد ملخص باللغة العربية
We study the quantum phase diagram of the spin-$1/2$ Heisenberg model on the kagome lattice with first-, second-, and third-neighbor interactions $J_1$, $J_2$, and $J_3$ by means of density matrix renormalization group. For small $J_2$ and $J_3$, this model sustains a time-reversal invariant quantum spin liquid phase. With increasing $J_2$ and $J_3$, we find in addition a $q=(0,0)$ N{e}el phase, a chiral spin liquid phase, a valence-bond crystal phase, and a complex non-coplanar magnetically ordered state with spins forming the vertices of a cuboctahedron known as a cuboc1 phase. Both the chiral spin liquid and cuboc1 phase break time reversal symmetry in the sense of spontaneous scalar spin chirality. We show that the chiralities in the chiral spin liquid and cuboc1 are distinct, and that these two states are separated by a strong first order phase transition. The transitions from the chiral spin liquid to both the $q=(0,0)$ phase and to time-reversal symmetric spin liquid, however, are consistent with continuous quantum phase transitions.
The properties of ground state of spin-$frac{1}{2}$ kagome antiferromagnetic Heisenberg (KAFH) model have attracted considerable interest in the past few decades, and recent numerical simulations reported a spin liquid phase. The nature of the spin l
The $mathbb{Z}_2$ topological phase in the quantum dimer model on the Kagome-lattice is a candidate for the description of the low-energy physics of the anti-ferromagnetic Heisenberg model on the same lattice. We study the extend of the topological p
We report 17O NMR measurements in the S=1/2 Cu2+ kagome antiferromagnet Herbertsmithite ZnCu3(OH)6Cl2 down to 45mK in magnetic fields ranging from 2T to 12T. While Herbertsmithite displays a gapless spin-liquid behavior in zero field, we uncover an i
We present thermodynamic and neutron data on Ni_3V_2O_8, a spin-1 system on a kagome staircase. The extreme degeneracy of the kagome antiferromagnet is lifted to produce two incommensurate phases at finite T - one amplitude modulated, the other helic
Magnetic skyrmion textures are realized mainly in non-centrosymmetric, e.g. chiral or polar, magnets. Extending the field to centrosymmetric bulk materials is a rewarding challenge, where the released helicity / vorticity degree of freedom and higher