ﻻ يوجد ملخص باللغة العربية
This paper explores the topic of preferential sampling, specifically situations where monitoring sites in environmental networks are preferentially located by the designers. This means the data arising from such networks may not accurately characterize the spatio-temporal field they intend to monitor. Approaches that have been developed to mitigate the effects of preferential sampling in various contexts are reviewed and, building on these approaches, a general framework for dealing with the effects of preferential sampling in environmental monitoring is proposed. Strategies for implementation are proposed, leading to a method for improving the accuracy of official statistics used to report trends and inform regulatory policy. An essential feature of the method is its capacity to learn the preferential selection process over time and hence to reduce bias in these statistics. Simulation studies suggest dramatic reductions in bias are possible. A case study demonstrates use of the method in assessing the levels of air pollution due to black smoke in the UK over an extended period (1970-1996). In particular, dramatic reductions in the estimates of the number of sites out of compliance are observed.
Facing increasing societal and economic pressure, many countries have established strategies to develop renewable energy portfolios, whose penetration in the market can alleviate the dependence on fossil fuels. In the case of wind, there is a fundame
Selecting the optimal Markowitz porfolio depends on estimating the covariance matrix of the returns of $N$ assets from $T$ periods of historical data. Problematically, $N$ is typically of the same order as $T$, which makes the sample covariance matri
In cluster randomized trials, patients are recruited after clusters are randomized, and the recruiters and patients may not be blinded to the assignment. This often leads to differential recruitment and systematic differences in baseline characterist
Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by mo
Nanoscientists have long conjectured that adjacent nanoparticles aggregate with one another in certain preferential directions during a chemical synthesis of nanoparticles, which is referred to the oriented attachment. For the study of the oriented a