ترغب بنشر مسار تعليمي؟ اضغط هنا

An atomic clock with $1times 10^{-18}$ room-temperature blackbody Stark uncertainty

186   0   0.0 ( 0 )
 نشر من قبل Kyle Beloy
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Stark shift due to blackbody radiation (BBR) is the key factor limiting the performance of many atomic frequency standards, with the BBR environment inside the clock apparatus being difficult to characterize at a high level of precision. Here we demonstrate an in-vacuum radiation shield that furnishes a uniform, well-characterized BBR environment for the atoms in an ytterbium optical lattice clock. Operated at room temperature, this shield enables specification of the BBR environment to a corresponding fractional clock uncertainty contribution of $5.5 times 10^{-19}$. Combined with uncertainty in the atomic response, the total uncertainty of the BBR Stark shift is now $1times10^{-18}$. Further operation of the shield at elevated temperatures enables a direct measure of the BBR shift temperature dependence and demonstrates consistency between our evaluated BBR environment and the expected atomic response.



قيم البحث

اقرأ أيضاً

Atomic clocks have been transformational in science and technology, leading to innovations such as global positioning, advanced communications, and tests of fundamental constant variation. Next-generation optical atomic clocks can extend the capabili ty of these timekeepers, where researchers have long aspired toward measurement precision at 1 part in $bm{10^{18}}$. This milestone will enable a second revolution of new timing applications such as relativistic geodesy, enhanced Earth- and space-based navigation and telescopy, and new tests on physics beyond the Standard Model. Here, we describe the development and operation of two optical lattice clocks, both utilizing spin-polarized, ultracold atomic ytterbium. A measurement comparing these systems demonstrates an unprecedented atomic clock instability of $bm{1.6times 10^{-18}}$ after only $bm{7}$ hours of averaging.
We report on an improved systematic evaluation of the JILA SrI optical lattice clock, achieving a nearly identical systematic uncertainty compared to the previous strontium accuracy record set by the JILA SrII optical lattice clock (OLC) at $2.1 time s 10^{-18}$. This improves upon the previous evaluation of the JILA SrI optical lattice clock in 2013, and we achieve a more than twenty-fold reduction in systematic uncertainty to $2.0 times 10^{-18}$. A seven-fold improvement in clock stability, reaching $4.8 times 10^{-17}/sqrt{tau}$ for an averaging time $tau$ in seconds, allows the clock to average to its systematic uncertainty in under 10 minutes. We improve the systematic uncertainty budget in several important ways. This includes a novel scheme for taming blackbody radiation-induced frequency shifts through active stabilization and characterization of the thermal environment, inclusion of higher-order terms in the lattice light shift, and updated atomic coefficients. Along with careful control of other systematic effects, we achieve low temporal drift of systematic offsets and high uptime of the clock. We additionally present an improved evaluation of the second order Zeeman coefficient that is applicable to all Sr optical lattice clocks. These improvements in performance have enabled several important studies including frequency ratio measurements through the Boulder Area Clock Optical Network (BACON), a high precision comparison with the JILA 3D lattice clock, a demonstration of a new all-optical time scale combining SrI and a cryogenic silicon cavity, and a high sensitivity search for ultralight scalar dark matter.
The absolute frequency of the $^{87}{rm Sr}$ clock transition measured in 2015 was reevaluated using an improved frequency link to the SI second. The scale interval of International Atomic Time (TAI) that we used as the reference was calibrated for a n evaluation interval of five days instead of the conventional interval of one month which is regularly employed in Circular T. The calibration on a five-day basis removed the uncertainty in assimilating the TAI scale of the five-day mean to that of the one-month mean. The reevaluation resulted in the total uncertainty of $10^{-16}$ level for the first time without local cesium fountains. Since there are presumably no correlations among systematic shifts of cesium fountains worldwide, the measurement is not limited by the systematic uncertainty of a specific primary frequency standard.
We experimentally investigate an optical frequency standard based on the $^2S_{1/2} (F=0)to {}^2F_{7/2} (F=3)$ electric octupole (textit{E}3) transition of a single trapped $^{171}$Yb$^+$ ion. For the spectroscopy of this strongly forbidden transitio n, we utilize a Ramsey-type excitation scheme that provides immunity to probe-induced frequency shifts. The cancellation of these shifts is controlled by interleaved single-pulse Rabi spectroscopy which reduces the related relative frequency uncertainty to $1.1times 10^{-18}$. To determine the frequency shift due to thermal radiation emitted by the ions environment, we measure the static scalar differential polarizability of the textit{E}3 transition as $0.888(16)times 10^{-40}$ J m$^2$/V$^2$ and a dynamic correction $eta(300~text{K})=-0.0015(7)$. This reduces the uncertainty due to thermal radiation to $1.8times 10^{-18}$. The residual motion of the ion yields the largest contribution $(2.1times 10^{-18})$ to the total systematic relative uncertainty of the clock of $3.2times 10^{-18}$.
We measure the dynamic differential scalar polarizabilities at 10.6 $mu$m for two candidate clock transitions in $^{176}mathrm{Lu}^+$. The fractional black body radiation (BBR) shifts at 300 K for the $^1S_0 leftrightarrow {^3D_1}$ and $^1S_0 leftrig htarrow {^3D_2}$ transitions are evaluated to be $-1.36,(9) times 10^{-18}$ and $2.70 ,(21) times10^{-17}$, respectively. The former is the lowest of any established optical atomic clock.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا