ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimation of temporal separation of slow light pulses in atomic vapors by weak measurement

205   0   0.0 ( 0 )
 نشر من قبل Pardeep Kumar
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show how two circular polarization components of a linearly polarized pulse, propagating through a coherently driven dilute atomic vapor, can be well resolved in time domain by weak measurement. Slower group velocity of one of the components due to electromagnetically induced transparency leads to a differential group delay between the two components. For low number density, this delay may not be large enough to temporally resolve the two components. We show how this can be enhanced in terms of mean time of arrival of the output pulse through a post-selected polarizer. We demonstrate the idea with all the analytical and numerical results, with a specific example of alkali atoms.



قيم البحث

اقرأ أيضاً

253 - D.L. Zhou , Lan Zhou , R.Q. Wang 2007
We present a semi-classical theory for light deflection by a coherent $Lambda$-type three-level atomic medium in an inhomogeneous magnetic field or an inhomogeneous control laser. When the atomic energy levels (or the Rabi coupling by the control las er) are position-dependent due to the Zeeman effect by the inhomogeneous magnetic field (or the inhomogeneity of the control field profile), the spatial dependence of the refraction index of the atomic medium will result in an observable deflection of slow signal light when the electromagnetically induced transparency happens to avoid medium absorption. Our theoretical approach based on Fermats principle in geometrical optics not only provides a consistent explanation for the most recent experiment in a straightforward way, but also predicts the new effects for the slow signal light deflection by the atomic media in an inhomogeneous off-resonant control laser field.
We present experimental evidence that light storage, i.e. the controlled release of a light pulse by an atomic sample dependent on the past presence of a writing pulse, is not restricted to small group velocity media but can also occur in a negative group velocity medium. A simple physical picture applicable to both cases and previous light storage experiments is discussed.
Physical processes that could facilitate coherent control of light propagation are now actively explored. In addition to fundamental interest, these efforts are stimulated by possibilities to develop, for example, a quantum memory for photonic states . At the same time, controlled localization and storage of photonic pulses may allow novel approaches to manipulate light via enhanced nonlinear optical processes. Recently, Electromagnetically Induced Transparency (EIT) was used to reduce the group velocity of propagating light pulses and to reversibly map propagating light pulses into stationary spin excitations in atomic media. Here we describe and experimentally demonstrate a novel technique in which light propagating in a medium of Rb atoms is converted into an excitation with localized, stationary electromagnetic energy, which can be held and released after a controllable interval. Our method creates pulses of light with stationary envelopes bound to an atomic spin coherence, raising new possibilities for photon state manipulation and non-linear optical processes at low light levels.
169 - Nicolas Mercadier 2013
We investigate multiple scattering of near-resonant light in a Doppler-broadened atomic vapor. We experimentally characterize the length distribution of the steps between successive scattering events. The obtained power law is characteristic of a sup erdiffusive behavior, where rare but very long steps (Levy flights) dominate the transport properties.
We analyze the nonlinear dynamics of atomic dark states in Lambda configuration that interact with light at exact resonance. We found a generalization of shape-preserving pulses [R. Grobe, F. T. Hioe, and J. H. Eberly, Phys. Rev. Lett. 73, 3183 (1994 )] and show that the condition for adiabaticity of the atomic dynamics is never violated, as long as spontaneous emission is negligible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا