ﻻ يوجد ملخص باللغة العربية
Ratchet effect -- a {it dc} current induced by the electromagnetic wave impinging on the spatially modulated two-dimensional (2D) electron liquid -- occurs when the wave amplitude is spatially modulated with the same wave vector as the 2D liquid but is shifted in phase. The analysis within the framework of the hydrodynamic model shows that the ratchet current is dramatically enhanced in the vicinity of the plasmonic resonances and has nontrivial polarization dependence. In particular, for circular polarization, the current component, perpendicular to the modulation direction, changes sign with the inversion of the radiation helicity. Remarkably, in the high-mobility structures, this component might be much larger than the the current component in the modulation direction. We also discuss the non-resonant regime realized in dirty systems, where the plasma resonances are suppressed, and demonstrate that the non-resonant ratchet current is controlled by the Maxwell relaxation in the 2D liquid.
Magnetic ratchets -- two-dimensional systems with superimposed non-centrosymmetric ferromagnetic gratings -- are considered theoretically. It is demonstrated that excitation by radiation results in a directed motion of two-dimensional carriers due to
We report on the observation of magnetic quantum ratchet effect in metal-oxide-semiconductor field-effect-transistors on silicon surface (Si-MOSFETs). We show that the excitation of an unbiased transistor by ac electric field of terahertz radiation a
We address the problem of separating the short-distance, high-energy physics of cyclotron motion from the long- distance, low-energy physics within the Lowest Landau Level in field theoretic treatments of the Fractional Quantum Hall Effect. We illust
We theoretically demonstrate that dc electron flow across the junction of two-dimensional electron systems leads to excitation of edge magnetoplasmons. The threshold current for such plasmon excitation does not depend on contact effects and approache
We present the first experimental realization of a ratchet cellular automaton (RCA) which has been recently suggested as an alternative approach for performing logical operations with interacting (quasi) particles. Our study was performed with intera