ﻻ يوجد ملخص باللغة العربية
Quantum computing becomes viable when a quantum state can be preserved from environmentally-induced error. If quantum bits (qubits) are sufficiently reliable, errors are sparse and quantum error correction (QEC) is capable of identifying and correcting them. Adding more qubits improves the preservation by guaranteeing increasingly larger clusters of errors will not cause logical failure - a key requirement for large-scale systems. Using QEC to extend the qubit lifetime remains one of the outstanding experimental challenges in quantum computing. Here, we report the protection of classical states from environmental bit-flip errors and demonstrate the suppression of these errors with increasing system size. We use a linear array of nine qubits, which is a natural precursor of the two-dimensional surface code QEC scheme, and track errors as they occur by repeatedly performing projective quantum non-demolition (QND) parity measurements. Relative to a single physical qubit, we reduce the failure rate in retrieving an input state by a factor of 2.7 for five qubits and a factor of 8.5 for nine qubits after eight cycles. Additionally, we tomographically verify preservation of the non-classical Greenberger-Horne-Zeilinger (GHZ) state. The successful suppression of environmentally-induced errors strongly motivates further research into the many exciting challenges associated with building a large-scale superconducting quantum computer.
The accumulation of quantum phase in response to a signal is the central mechanism of quantum sensing, as such, loss of phase information presents a fundamental limitation. For this reason approaches to extend quantum coherence in the presence of noi
We propose a superconducting circuit architecture suitable for digital-analog quantum computing (DAQC) based on an enhanced NISQ family of nearest-neighbor interactions. DAQC makes a smart use of digital steps (single qubit rotations) and analog bloc
Leakage errors occur when a quantum system leaves the two-level qubit subspace. Reducing these errors is critically important for quantum error correction to be viable. To quantify leakage errors, we use randomized benchmarking in conjunction with me
Three-wave mixing in second-order nonlinear optical processes cannot occur in atomic systems due to the electric-dipole selection rules. In contrast, we demonstrate that second-order nonlinear processes can occur in a superconducting quantum circuit
We propose a superconducting quantum circuit based on a general symmetry principle -- combinatorial gauge symmetry -- designed to emulate topologically-ordered quantum liquids and serve as a foundation for the construction of topological qubits. The