ترغب بنشر مسار تعليمي؟ اضغط هنا

Une interpretation modulaire de la variete trianguline

142   0   0.0 ( 0 )
 نشر من قبل Schraen Benjamin
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a patching module constructed in recent work of Caraiani, Emerton, Gee, Geraghty, Pa{v{s}}k{=u}nas and Shin we construct some kind of analogue of an eigenvariety. We can show that this patched eigenvariety agrees with a union of irreducible components of a space of trianguline Galois representations. Building on this we discuss the relation with the modularity conjectures for the crystalline case, a conjecture of Breuil on the locally analytic socle of representations occurring in completed cohomology and with a conjecture of Bellaiche and Chenevier on the complete local ring at certain points of eigenvarieties.



قيم البحث

اقرأ أيضاً

Let F be a finite extension of Qp, O_F its ring of integers and E a finite extension of Fp. The natural action of the unit group O_F* on O_F extends in a continuous action on the Iwasawa algebra E[[O_F]]. In this work, we show that non zero ideals of E[[O_F]] which are stable under O_F* are open. As a consequence, we deduce the fidelity of the action of E[[U]], with U the subgroup of upper unipotent matrices in GL2(O_F) on an irreducible admissible smooth E-representation of GL2(F). ----- Soit F une extension finie de Qp, danneau des entiers O_F et E une extension finie de Fp. Laction naturelle du groupes des unites O_F* sur O_F se prolonge alors en une action continue sur lalg`ebre dIwasawa E[[O_F]]. Dans ce travail, on demontre que les ideaux non nuls de E[[O_F]] stables par O_F* sont ouverts. En particulier, on en deduit la fidelite de laction de lalg`ebre dIwasawa des matrices unipotentes superieures de GL2(O_F) sur une representation lisse irreductible admissible de GL2(F).
272 - Fabien Pazuki 2015
The aim of this paper is to study a conjecture predicting a lower bound on the canonical height on abelian varieties, formulated by S. Lang and generalized by J. H. Silverman. We give here an asymptotic result on the height of Heegner points on the m odular jacobian $J_{0}(N)$, and we derive non-trivial remarks about the conjecture.
116 - O.Ogievetsky , V.Schechtman 2006
We introduce an algebra given by quadratic relations in an algebra of polynomials in an infinite number of variables. Using this algebra, we prove some explicit formulas for the Sturm sequence of a polynomial.
283 - Fabien Pazuki 2015
This paper contains results concerning a conjecture made by Lang and Silverman predicting a lower bound for the canonical height on abelian varieties of dimension 2 over number fields. The method used here is a local height decomposition. We derive a s corollaries uniform bounds on the number of torsion points on families of abelian surfaces and on the number of rational points on families of genus 2 curves.
144 - Gaetan Chenevier 2010
Let X_d be the p-adic analytic space classifying the d-dimensional (semisimple) p-adic Galois representations of the absolute Galois group of Q_p. We show that the crystalline representations are Zarski-dense in many irreducible components of X_d, in cluding the components made of residually irreducible representations. This extends to any dimension d previous results of Colmez and Kisin for d = 2. For this we construct an analogue of the infinite fern of Gouv^ea-Mazur in this context, based on a study of analytic families of trianguline (phi,Gamma)-modules over the Robba ring. We show in particular the existence of a universal family of (framed, regular) trianguline (phi,Gamma)-modules, as well as the density of the crystalline (phi,Gamma)-modules in this family. These results may be viewed as a local analogue of the theory of p-adic families of finite slope automorphic forms, they are new already in dimension 2. The technical heart of the paper is a collection of results about the Fontaine-Herr cohomology of families of trianguline (phi,Gamma)-modules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا