ﻻ يوجد ملخص باللغة العربية
In this work we obtain the general form of polynomial mappings that commute with a linear action of a relative symmetry group. The aim is to give results for relative equivariant polynomials that correspond to the results for relative invariants obtained in a previous paper [P.H. Baptistelli, M. Manoel (2013) Invariants and relative invariants under compact Lie groups, J. Pure Appl. Algebra 217, 2213{2220]. We present an algorithm to compute generators for relative equivariant submodules from the invariant theory applied to the subgroup formed only by the symmetries. The same method provides, as a particular case, generators for equivariants under the whole group from the knowledge of equivariant generators by a smaller subgroup, which is normal of finite index.
This paper presents algebraic methods for the study of polynomial relative invariants, when the group G formed by the symmetries and relative symmetries is a compact Lie group. We deal with the case when the subgroup H of symmetries is normal in G wi
In this article, we focus on the left translation actions on noncommutative compact connected Lie groups with topological dimension 3 or 4, consisting of ${rm SU}(2),,{rm U}(2),,{rm SO}(3),,{rm SO}(3) times S^1$ and ${{rm Spin}}^{mathbb{C}}(3)$. We d
Given a Lie group $G$ with finitely many components and a compact Lie group A which acts on $G$ by automorphisms, we prove that there always exists an A-invariant maximal compact subgroup K of G, and that for every such K, the natural map $H^1(A,K)to
In this paper we consider the re-expansion problems on compact Lie groups. First, we establish weight
Let $G$ be a connected, simply-connected, compact simple Lie group. In this paper, we show that the isometry group of $G$ with a left-invariant pseudo-Riemannan metric is compact. Furthermore, the identity component of the isometry group is compact if $G$ is not simply-connected.