ترغب بنشر مسار تعليمي؟ اضغط هنا

The Voronoi Functional is Maximized by the Delaunay Triangulation in the Plane

155   0   0.0 ( 0 )
 نشر من قبل Alexey Glazyrin
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the Voronoi functional of a triangulation of a finite set of points in the Euclidean plane and prove that among all geometric triangulations of the point set, the Delaunay triangulation maximizes the functional. This result neither extends to topological triangulations in the plane nor to geometric triangulations in three and higher dimensions.



قيم البحث

اقرأ أيضاً

We present an algorithm for producing Delaunay triangulations of manifolds. The algorithm can accommodate abstract manifolds that are not presented as submanifolds of Euclidean space. Given a set of sample points and an atlas on a compact manifold, a manifold Delaunay complex is produced provided the transition functions are bi-Lipschitz with a constant close to 1, and the sample points meet a local density requirement; no smoothness assumptions are required. If the transition functions are smooth, the output is a triangulation of the manifold. The output complex is naturally endowed with a piecewise flat metric which, when the original manifold is Riemannian, is a close approximation of the original Riemannian metric. In this case the ouput complex is also a Delaunay triangulation of its vertices with respect to this piecewise flat metric.
We solve the oscillation stability problem for the Urysohn sphere, an analog of the distortion problem for the Hilbert space in the context of the Urysohn universal metric space. This is achieved by solving a purely combinatorial problem involving a family of countable homogeneous metric spaces with finitely many distances.
250 - Jean Gallier 2008
Some basic mathematical tools such as convex sets, polytopes and combinatorial topology, are used quite heavily in applied fields such as geometric modeling, meshing, computer vision, medical imaging and robotics. This report may be viewed as a tutor ial and a set of notes on convex sets, polytopes, polyhedra, combinatorial topology, Voronoi Diagrams and Delaunay Triangulations. It is intended for a broad audience of mathematically inclined readers. I have included a rather thorough treatment of the equivalence of V-polytopes and H-polytopes and also of the equivalence of V-polyhedra and H-polyhedra, which is a bit harder. In particular, the Fourier-Motzkin elimination method (a version of Gaussian elimination for inequalities) is discussed in some detail. I also included some material on projective spaces, projective maps and polar duality w.r.t. a nondegenerate quadric in order to define a suitable notion of ``projective polyhedron based on cones. To the best of our knowledge, this notion of projective polyhedron is new. We also believe that some of our proofs establishing the equivalence of V-polyhedra and H-polyhedra are new.
Groups of people or even robots often face problems they need to solve together. Examples include collectively searching for resources, choosing when and where to invest time and effort, and many more. Although a hierarchical ordering of the relevanc e of the group members inputs during collective decision making is abundant, a quantitative demonstration of its origin and advantages using a generic approach has not been described yet. Here we introduce a family of models based on the most general features of group decision making to show that the optimal distribution of competences is a highly skewed function with a structured fat tail. Our results have been obtained by optimizing the groups compositions through identifying the best performing distributions for both the competences and for the members flexibilities/pliancies. Potential applications include choosing the best composition for a group intended to solve a given task.
224 - Kristin A. Camenga 2005
In this paper, we will describe the space spanned by the angle-sums of polytopes, recorded in the alpha-vector. We will consider the angles sums of simplices and the angles sums and face numbers of simplicial polytopes and general polytopes. We will construct families of polytopes whose angle sums span the spaces of polytopes defined by the Gram and Perles equations, analogues of the Euler and Dehn-Sommerville equations. We show that the dimensions of the affine span of the space of angle sums of simplices is floor[(d-1)/2] + 1, and that of the angle sums and face numbers of simplicial polytopes and general polytopes are d-1 and 2d-3 respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا